首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
全球气候变化对陆地生态系统过程和功能产生重要影响,土壤微生物群落在陆地生态系统几乎所有的生物地球化学循环过程起到关键作用。本文针对气候变化对土壤微生物的影响研究结果,主要从土壤微生物活性(土壤呼吸与酶活性)和微生物群落结构对大气CO2升高、增温、降水变化、氮沉降等全球变化单因子和多因子的直接或间接响应进行综述,并进一步阐述参与土壤碳氮循环过程的功能微生物对气候变化的响应机制与适应规律。全球变化因子改变了土壤微生物的群落组成,呈现降低、增加和无影响3种效应,且不同功能微生物也呈现不同的敏感性。多个全球变化因子对土壤微生物群落结构的交互效应可能存在加性、协同、拮抗作用,产生加和的、相互促进或抵消的整体效果。然而,目前对多种全球变化因子如三因子或四因子的组合作用,以及多因子的高阶交互作用研究较少;已有的研究地理分布不均匀,且时间和空间大尺度的研究不足;缺乏综合生态系统模型对全球变化的影响进行模拟和预测。最后指出今后的研究发展方向:进行多种全球变化因子、长时间、多生态系统点位、大空间尺度的土壤微生物群落动态研究;探究多种全球变化因子的高阶交互作用;建立综合响应的生态系统模...  相似文献   

2.
全球变化对土壤动物多样性的影响   总被引:2,自引:0,他引:2  
陆地生态系统由地上和地下两部分组成,二者相互作用共同影响生态系统过程和功能.土壤动物在生物地球化学循环方面起着重要作用.随着人们对土壤动物在生态系统过程中重要性的认识,越来越多的研究表明全球变化对土壤动物多样性产生深刻影响.土地利用方式的改变、温度增加和降雨格局的改变能直接影响土壤动物多样性.CO2浓度和氮沉降的增加主要通过影响植物群落结构、组成和化学成分对土壤动物多样性产生间接影响.不同环境因子之间又能相互作用共同影响土壤动物多样性.了解全球变化背景下不同驱动因子及其交互作用对土壤动物多样性的影响,有助于更好地预测未来土壤动物多样性及相关生态学过程的变化.  相似文献   

3.
全球变化对土壤动物多样性的影   总被引:1,自引:0,他引:1  
吴廷娟 《生态学杂志》2013,24(2):581-588
陆地生态系统由地上和地下两部分组成,二者相互作用共同影响生态系统过程和功能.土壤动物在生物地球化学循环方面起着重要作用.随着人们对土壤动物在生态系统过程中重要性的认识,越来越多的研究表明全球变化对土壤动物多样性产生深刻影响.土地利用方式的改变、温度增加和降雨格局的改变能直接影响土壤动物多样性.CO2浓度和氮沉降的增加主要通过影响植物群落结构、组成和化学成分对土壤动物多样性产生间接影响.不同环境因子之间又能相互作用共同影响土壤动物多样性.了解全球变化背景下不同驱动因子及其交互作用对土壤动物多样性的影响,有助于更好地预测未来土壤动物多样性及相关生态学过程的变化.  相似文献   

4.
郑勇  贺纪正 《应用生态学报》2020,31(7):2464-2472
干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。  相似文献   

5.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

6.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

7.
林婉奇  薛立 《生态学报》2020,40(12):4188-4197
土壤微生物是有机物分解和养分循环的主要介质,因此在维持土壤的功能多样性和持续性方面发挥着关键作用。气候变化驱动因素会影响土壤微生物的生理活动,引起其群落结构和功能多样性的改变,并对生物地球化学循环和气候―生态系统反馈产生连锁效应,其中氮沉降和降水是全球气候变化的研究热点。土壤氮(N)的有效性有可能通过改变微生物的群落组成以调节微生物对降水变化的响应,但目前关于N沉降和降水及其交互作用对土壤微生物群落功能多样性的影响机制仍不清楚。为了准确预测未来气候条件下生态系统的功能状况,需要更好地了解土壤微生物对环境变化的响应。基于BIOLOG技术综述了氮沉降和降水变化及其交互作用对土壤微生物功能多样性影响的相关研究进展,可以为进一步研究全球气候变化背景下地下生态学的发展提供参考。另外,分析阐述了当前工作中存在的一些主要瓶颈,并对未来的研究热点进行了探讨和展望。  相似文献   

8.
全球变化是近几十年世界广泛关注的热点之一.土地利用变化和化石能源消耗已引起如温室气体增多、气温升高、降水格局改变等多种形式的变化.这些变化对整个生态系统过程,特别是陆地生态系统碳氮循环过程有着深远影响.自20世纪70年代以来,世界各地已开展大量野外控制试验用以模拟单因子和多因子气候变化的影响,这些研究对解释生态系统响应和适应全球变化的内在机制提供了重要的基础.本文梳理了全球变化控制试验的发展历程,介绍了不同因子模拟控制试验的研究概况及不足之处,重点阐述CO2倍增、增温、降水和模拟氮沉降等全球变化控制试验在土壤微生物生态学研究中的应用,探析土壤微生物及其介导的生态学过程对全球变化的响应和反馈,并对未来野外控制试验需关注的问题和研究方向进行了展望,为认识气候变化对地下生态系统的影响提供参考.  相似文献   

9.
刘任涛 《生态学杂志》2012,31(3):760-765
在全球性气候变化背景下,极端降雨事件频发,总结土壤动物多样性与降雨变化间的关系及其响应机制,有助于理解全球变化对土壤生态系统结构与功能的作用过程,对于探讨陆地生态系统应对全球变化具有重要科学意义。荒漠草原生态系统极度脆弱,对气候变化敏感,但是关于荒漠草原土壤动物与降雨变化间关系的研究报道比较少,严重制约了对荒漠草原生态系统的有效管理和可持续利用。本文从地上、地面和地下3个方面总结了土壤动物和降雨变化间的关系,并就荒漠草原土壤动物应对气候变化研究提出了一些建议。研究表明,降雨变化直接影响土壤动物群落结构;土壤动物对降雨变化反应强烈,不同动物类群产生了积极的响应规律;某些土壤动物类群对于降雨变化还具有重要指示作用。在荒漠草原生态系统中,今后需要从降雨变化对土壤动物产生的长期影响、土壤动物对降雨变化的适应方式和某些动物类群对土壤水分敏感性以及土壤动物与气候变化间的互为反馈关系等方面加强研究。  相似文献   

10.
陆地生态系统是维持人类生命活动的重要场所,为人类的生存和发展提供多种生态服务。随着全球变暖和降水格局的改变,干旱事件发生的频度和强度显著增加,严重影响了陆地生态系统的结构和功能。植物和土壤微生物作为陆地生态系统的重要组成部分,在物质循环和能量流动等方面发挥不可或缺的作用。目前,有关干旱如何影响植物和土壤微生物的研究已受到学者们的广泛关注,但大多聚焦于干旱过程,对干旱后复水过程的理解仍十分有限。此外,干旱后复水不仅可以对植物的生长起到补偿作用,而且能够调节陆地生态系统的恢复。因此,开展干旱后复水对植物和土壤微生物影响的相关研究是当前全球气候变化领域的重要生态热点。本文以植物生长、生理性状及土壤微生物为切入点,概述了气候变化下干旱及复水过程对陆地生态系统植物和土壤微生物的影响,并基于当前研究存在的问题,提出了未来需要深入研究的方向,以期为气候变化下植物和土壤微生物如何响应干旱及复水过程的相关研究提供理论参考,进而为维持陆地生态系统的结构和功能并保护生物多样性提供科学依据。  相似文献   

11.
Global warming is causing increases in surface temperatures and has the potential to influence the structure of soil microbial and faunal communities. However, little is known about how warming interacts with other ecosystem drivers, such as plant functional groups or changes associated with succession, to affect the soil community and thereby alter ecosystem functioning. We investigated how experimental warming and the removal of plant functional groups along a post-fire boreal forest successional gradient impacted soil microbial and nematode communities. Our results showed that warming altered soil microbial communities and favored bacterial-based microbial communities, but these effects were mediated by mosses and shrubs, and often varied with successional stage. Meanwhile, the nematode community was generally unaffected by warming and was positively affected by the presence of mosses and shrubs, with these effects mostly independent of successional stage. These results highlight that different groups of soil organisms may respond dissimilarly to interactions between warming and changes to plant functional groups, with likely consequences for ecosystem functioning that may vary with successional stage. Due to the ubiquitous presence of shrubs and mosses in boreal forests, the effects observed in this study are likely to be significant over a large proportion of the terrestrial land surface. Our results demonstrate that it is crucial to consider interactive effects between warming, plant functional groups, and successional stage when predicting soil community responses to global climate change in forested ecosystems.  相似文献   

12.
氮沉降对土壤线虫群落影响的研究进展   总被引:1,自引:0,他引:1  
综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉降增加可能会使土壤食物网简化。氮沉降增加主要通过改变土壤微环境(如增加含氮离子浓度、降低土壤pH)直接影响土壤线虫群落,或者改变植物地上地下资源的输入和线虫与其他土壤动物的关系,间接影响线虫群落。最后,根据目前研究现状,指出了当前研究存在的局限性,包括研究时间和空间尺度上以及研究技术手段上的局限。建议综合多个全球环境变化因子,并结合室内试验及分子手段的方法对土壤线虫群落进行研究。  相似文献   

13.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

14.
General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.  相似文献   

15.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

16.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.  相似文献   

17.
The response of soil biotas to climate change has the potential to regulate multiple ecosystem functions. However, it is still challenging to accurately predict how multiple climate change factors will affect multiple ecosystem functions. Here, we assessed the short-term responses of agroecosystem multifunctionality to a factorial combination of elevated CO2 (+200 ppm) and O3 (+40 ppb) and identified the key soil biotas (i.e., bacteria, fungi, protists, and nematodes) concerning the changes in the multiple ecosystem functions for two rice varieties (Japonica, Nanjing 5055 vs. Wuyujing 3). We provided strong evidence that combined treatment rather than individual treatments of short-term elevated CO2 and O3 significantly increased the agroecosystem multifunctionality index by 32.3% in the Wuyujing 3 variety, but not in the Nanjing 5055 variety. Soil biotas exhibited an important role in regulating multifunctionality under short-term elevated CO2 and O3, with soil nematode abundances better explaining the changes in ecosystem multifunctionality than soil biota diversity. Furthermore, the higher trophic groups of nematodes, omnivores-predators served as the principal predictor of agroecosystem multifunctionality. These results provide unprecedented new evidence that short-term elevated CO2 and O3 can potentially affect agroecosystem multifunctionality through soil nematode abundances, especially omnivores-predators. Our study demonstrates that high trophic groups were specifically beneficial for regulating multiple ecosystem functions and highlights the importance of soil nematode communities for the maintenance of agroecosystem functions and health under climate change in the future.  相似文献   

18.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   

19.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

20.
The effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号