首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background

The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses.

Methodology/Principal Findings

E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice.

Conclusions/Significance

The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.  相似文献   

2.
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.  相似文献   

3.
Arthropod-borne chikungunya virus (CHIKV) infection can cause a debilitating arthritic disease in human. However, there are no specific antiviral drugs and effective licensed vaccines against CHIKV available for clinical use. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing CHIKV E2-E1 antigen, and compared its immunogenicity with soluble recombinant protein sE2-E1 antigen expressed in S2 cells. For comparison, we first showed that recombinant protein antigens mixed with aluminum adjuvant elicit strong antigen-specific humoral immune response and a moderate cellular immune response in C57BL/6 mice. Moreover, sE2-E1 vaccine stimulated 12-23 folds more neutralizing antibodies than sE1 vaccine and sE2 vaccine. Significantly, when E2-E1 gene was delivered by an mRNA-LNP vaccine, not only the better magnitude of neutralizing antibody responses was induced, but also greater cellular immune responses were generated, especially for CD8+ T cell responses. Moreover, E2-E1-LNP induced CD8+ T cells can perform cytotoxic effect in vivo. Considering its better immunogenicity and convenience of preparation, we suggest that more attention should be placed to develop CHIKV E2-E1-LNP mRNA vaccine.  相似文献   

4.
尼帕病毒膜融合蛋白F和受体结合蛋白G在病毒感染和诱导机体产生保护性免疫中起重要的作用。通过PCR扩增获得尼帕病毒F1和G基因片段(均去掉信号肽和跨膜区),克隆至原核表达载体,IPTG诱导大肠杆菌表达目的蛋白,Western blot表明重组F1、G蛋白与兔抗尼帕病毒血清具有良好的反应原性;同时将F1和G基因克隆至经改造过的杆状病毒表达载体,获得了含有目的基因的重组杆状病毒,接种sf9单层细胞,间接免疫荧光检测表明F1、G蛋白在杆状病毒中正确表达,并与抗尼帕病毒血清具有良好的反应原性。以纯化原核表达的F1、G蛋白免疫兔获得了抗F1和抗G重组蛋白的特异血清,Western blot和间接免疫荧光检测表明所制备的血清具有特异性。试验所表达的抗原和制备的特异血清可用于尼帕病的诊断。  相似文献   

5.
根据伪狂犬病病毒(PRV)Min-A株gE基因序列,利用PCR方法扩增了PRV-gE基因不含信号肽、胞内区和跨膜区的主要抗原表位区,并克隆到原核表达载体pGEX-6p-1中,获得的重组质粒命名为pGEX-tgE。经SDSPAGE电泳分析证实克隆的部分gE基因获得了表达,融合表达产物大小约为63kD,并在终浓度为0.6mmol/L的IPTG诱导下,3.5h其表达量达到高峰。通过改变诱导条件,有效抑制了包涵体形成,提高了重组蛋白的溶解性。Western blot分析证实表达的重组gE蛋白具有抗原反应活性。将表达产物利用亲和层析法纯化后作为ELISA抗原,通过对其特异性、敏感性及工作条件的优化试验,和对48份PRV阴性血清样品的检测结果的统计学分析,建立了猪伪狂犬病tgE-ELISA鉴别诊断方法。通过对400份送检血清样品的检测结果分析,表明其与PRV全病毒ELISA试验的符合率高达95%以上,与基于抗gE蛋白单抗竞争性ELISA的符合率达94%。此方法可用于gE基因缺失PRV疫苗免疫动物和PRV自然感染动物的鉴别诊断。  相似文献   

6.
利用基因工程技术制备抗原性好的弓形虫GRA6蛋白和P30蛋白的融合蛋白,并用作抗原检测弓形虫抗体。根据弓形虫GRA6蛋白和P30蛋白的氨基酸序列,通过计算机分析,筛选出其中较强的抗原决定簇。用PCR方法分别扩增含抗原决定簇的基因片段。将这两个基因片段克隆至同一质粒pET28a(+)内,表达一个融合蛋白。将重组质粒转化大肠杆菌BL21(DE3),筛选表达该融合蛋白的工程菌。纯化表达的融合蛋白,用已知的6份抗弓形虫IgM阳性血清和大量正常人血清,ELISA法检测纯化融合蛋白的抗原性和特异性。获得了高效表达含弓形虫GRA6蛋白和P30蛋白抗原表位的工程菌,表达的融合蛋白约占菌体蛋白总量的25%。纯化获得了表达的融合蛋白,该蛋白有较好的抗原性和特异性。表达的弓形虫GRA6和P30融合蛋白可用做抗原检测弓形虫抗体,用于临床及孕妇检测,对优生优育有较大意义。  相似文献   

7.
The objective of this study was expression of a recombinant fusion protein p24-gp41 to gain a proper folding pattern of the proteins which could be recognized by specific antibodies against human immunodeficiency virus type 1 (HIV-1) for development of a reliable serodiagnostic kit. Serodiagnostic method using enzyme-linked immunosorbent assay (ELISA) with the expressed recombinant fusion protein p24-gp41 was carried out to test the sensitivity and specificity of the protein using human sera and various reference panels from Boston Biomedica Inc. (BBI). The level of the expression was determined to be 30% and the final recovery from fermentation and purification process was calculated as 80 mg/L with more than 98% purity. The developed ELISA assay was demonstrated to have 100 and 99.5% sensitivity and specificity, respectively, detecting anti-HIV-1 antibody using 900 positive and 10,000 negative human sera. The developed assay showed reliable results in comparison with other reference HIV ELISA kits using various BBI panels as well. In conclusion, the recombinant fusion protein p24-gp41 was expressed and used to develop a serodiagnostic kit for screening of the HIV-1 with high sensitivity (100%) and specificity (99.5%) which could be useful for screening large groups of blood donors.  相似文献   

8.
旋毛虫肌幼虫ES抗原的基因克隆及高效表达   总被引:7,自引:0,他引:7  
作者对编码旋毛虫肌幼虫ES抗原的部分结构基因进行了克隆、鉴定和表达。用RNA PCR技术直接从旋毛虫肌幼虫总RNA中反转录并扩增出0.7kh的靶DNA,酶切分析后将其克隆到融合表达载体pEx3lC中。SDS—PAGE电泳表明,含重组子的大肠杆菌能够表达出一分子量为37kDa的融合蛋白(P37),后者占菌体总蛋白的22%以上,并以包含体形式存在于菌体中。经对纯化后表达蛋白的ELlSA检测,证明它能被猪旋毛虫病阳性血清和抗旋毛虫单克隆抗体识别。研究结果揭示,重组蛋白P37对于研制旋毛虫病诊断抗原和免疫抗原具有潜在的应用价值。  相似文献   

9.
Three pairs of specific primers were designed to amplify the F2-1, F2-2 and XF2-2 truncated sequences of ORF2 which encodes the capsid protein of porcine circovirus type 2 (PCV-2). The F2-1 sequence had most of the NLS region of ORF2, but the F2-2 and XF2-2 genes had the NLS region deleted. Truncated genes were subcloned into pET-32a(+) vectors to construct recombinant fusion expression vectors. The vectors were then transformed into Rosetta(DE3) E. coli and expressed by induction of IPTG. Expressed proteins were detected by western blotting and ELISA. The protein with best immunoreactivity was confirmed and selected, then utilized to inoculate SPF rabbits to prepare polyclonal antibodies. The protein and prepared polyclonal antibody were utilized to detect sera samples against PCV-2 from Shandong province and PCV-2 particles in PK-15 cells. In our study, three recombinant fusion proteins were successfully obtained, and the molecular weights of fusion proteins were 35.9 kDa, 33.6 kDa and 38.6 kDa respectively detected by SDS-PAGE. All of the proteins showed positive reaction with anti-PCV-2 antisera, and His-XF2-2 showed better immunoreactivity than the others. The protein of His-XF2-2 was coated as antigen in ELISA to detect the seroprevalence of PCV-2 in certain districts of Shandong province, the seropositivity rate was 27.7 % (73/264). Specific fluorescence and positive signals for PCV-2 could be detected in PK-15 cells inoculated with PCV-2 with the participation of prepared antibodies against His-XF2-2 in IFA and IPMA. Experimental results indicated that the truncated PCV-2 ORF2 gene containing most of the NLS region was successfully expressed in E. coli, and His-XF2-2 was demonstrated to have better immunoreactivity with anti-PCV-2 antisera than the other two fusion proteins. His-XF2-2 and prepared polyclonal antibodies against it had a satisfactory capability in detecting PCV-2 infection.  相似文献   

10.
从一例输入性传染性非典型性肺炎病人血清中提取病毒RNA,通过RT—PCR方法扩增出SARS病毒核蛋白基因片段,克隆入质粒载体pUCm—T后,进行核苷酸序列的测定及分析,与已公布的SARS病毒基因序列进行比较,证实为SARS冠状病毒核蛋白基因。为了解该病毒核蛋白的抗原特性,将核蛋白基因插入表达载体,构建重组质粒pET28a—SN,转导大肠杆菌BL21(DE3)后,加IPTG诱导表达。产物经SDS—PAGE电泳分析,表达出相对分子量约为50kDa的蛋白,占整个菌体的45%左右。Westem—blot分析表明,表达产物仅与SARS阳性病人血清起反应,而与正常血清不起反应。间接ELISA免疫检测,抗原滴度达1:12500。表明表达的核蛋白为SARS特异性抗原,这为SARS病毒的诊断试剂的研制提供了方便而安全的抗原来源。  相似文献   

11.

Background

Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored.

Methods

A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity.

Results

Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion.

Conclusions

Cells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.  相似文献   

12.
昆虫神经毒素LqhIT2的表达、抗血清制备及活性分析   总被引:2,自引:0,他引:2  
李洪波  夏玉先 《生物工程学报》2008,24(10):1761-1767
根据毕赤酵母密码子偏爱性,不改变毒素蛋白质一级结构,设计合成了昆虫神经毒素LqhIT2基因,并分别克隆至大肠杆菌融合表达载体pPET30-a( )和毕赤酵母分泌表达载体pPIC9K.在IPTG的诱导下,神经毒素在大肠杆菌中融合表达,表达产物经镍亲和层析纯化后,用于免疫BALB/c小鼠,制备了特异性较高的抗血清,抗体滴度超过1:128 000.利用制备的抗血清,采用斑点杂交,筛选得到了较高水平分泌表达重组LqhIT2的酵母转化子,摇瓶条件下,毒素表达量约9 mg/L.大肠杆菌表达产物没有生物活性,酵母表达产物经注射蝗虫表现出杀虫活性.  相似文献   

13.
登革病毒(Dengue virus,DENV)属于黄病毒科(Flaviviridae),黄病毒属(Flavivirus),为单股正链RNA病毒,有4个不同的血清型(DENV-1,2,3,4),主要通过埃及伊蚊(Aedes aegypti)和白纹伊蚊(Aedes albopictus)传播,可引起登革热、登革出血热、登革休克综合征等多种疾病[1,2]。E蛋白是位于DENV表面的结构蛋白,由495个氨基酸组成,它既含有黄病毒亚群特异的和登革病毒血清型特异的抗原表位,又有与中和,血凝抑制作用有关的抗原表位,是病毒颗粒的主要包膜蛋白[3]。Modis等研究表明,DENV-2型E蛋白以延伸的二聚体形式平铺在病毒表面,折叠成3个不…  相似文献   

14.
目的:转铁蛋白受体特异性富含于血脑屏障和肿瘤细胞的表面,是当前中枢神经系统疾病和肿瘤治疗中定向转运的重要靶标。拟获得在大肠杆菌中能高效可溶表达的转铁蛋白受体单链抗体与链亲和素(SA)的重组融合蛋白。方法:根据GenBank数据库报道的SA的核苷酸序列分段合成基因,连接后经PCR获得完整的基因片段,插入pGEM-T载体中测序。将序列正确的SA基因与大鼠转铁蛋白受体单链抗体基因ox26-scFv分别插入原核表达载体pTIG-Trx中,构建重组表达克隆pTIG-Trx/scFv-SA,并在大肠杆菌中诱导表达。ELISA检测融合蛋白的生物学活性。结果:对pGEM-T/SA克隆的测序结果显示,合成的SA基因与文献报道相符。重组融合蛋白在大肠杆菌中获得了可溶性表达,约占菌体上清总蛋白量的30%;ELISA结果表明该融合蛋白具备与转铁蛋白受体和生物素的结合的双重活性。结论:有活性的重组融合蛋白的获得为构建一个通用性的以转铁蛋白受体介导的血脑屏障和肿瘤转运靶向载体打下了基础。  相似文献   

15.
原核生物作为宿主细胞被广泛应用于异源蛋白质的重组表达,并且为生物活性蛋白质的制备提供了一种高效、经济的方法,因而在分子生物学中得到普遍的应用。然而,病毒蛋白在使用原核重组表达系统进行重组表达时,会出现病毒蛋白溶解性差和表达量低等问题。因此,通过使用各种融合标签以增加目的重组蛋白的表达量和溶解性成为有效的方法。本研究通过使用3种融合标签(EDA标签、MBP标签和GST标签)以获得表达量高的可溶性重组表达猪圆环病毒2型壳蛋白;并比较3种融合标签对该蛋白表达量、溶解性和稳定性的影响。研究结果表明,EDA标签可以显著提高重组表达的猪圆环病毒2型壳蛋白表达量,并且能够增强该蛋白的稳定性;MBP标签可增强重组表达的猪圆环病毒2型壳蛋白表达量,但是不能改善该蛋白的稳定性;GST标签能够增强该重组表达蛋白的表达量,但是不能增强该蛋白的溶解性和稳定性。本研究将EDA作为PCV2-CP蛋白的融合标签,显著提高PCV2-CP-EDA重组蛋白的表达量和增强该重组蛋白的稳定性,为病毒蛋白的可溶性重组表达提供了一种新的融合标签。  相似文献   

16.
Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding.  相似文献   

17.
Three cDNAs, termed EpC1, TPxEg and EgG5, were isolated by immunoscreening from an Echinococcus granulosus cDNA library. The recombinant phages exhibited strong reactivity with sera from humans with confirmed cystic echinococcosis (CE) and with sera from mice infected with E. granulosus oncospheres. The cDNAs were subcloned into a pET vector, expressed as fusion proteins tagged with GST and affinity purified against the GST tag. Of the three recombinant proteins, EpC1 achieved the highest performance for serodiagnosis of CE in Western blot analysis using a panel of clinically defined human sera to initially address the sensitivity and specificity of the molecules. The protein yielded an overall sensitivity of 92.2% and specificity of 95.6%, levels unprecedented taking into account the large panel of 896 human sera that were tested. The strategy used may also prove suitable for improved immunodiagnosis of other parasitic infections.  相似文献   

18.
用KpnⅠ和HindⅢ双酶切pGEMTB3克隆质粒,得到大小约为225bp的ShTB基因片段,分别将其插入到经双酶切的pQE40和pQE30表达载体中,构建了2个ShTB的重组表达质粒pQE40B3和pQE30B2,分别转化到E.coliM15,经IPTG诱导后,重组质粒目的蛋白均得到表达。其中,pQE40B3表达蛋白约占菌体总蛋白的37%,主要为包涵体形式。pQE30B2表达蛋白约占菌体总蛋白的16%,主要为可溶性形式,约9.2%。为重组抗原的制备提供了必要的物质基础。  相似文献   

19.
为了表达SARS-CoV的S蛋白的受体结合区并对其免疫原性进行分析,用PCR方法扩增S蛋白的受体结合区基因片段,克隆至原核表达质粒pET-F32a+并在大肠杆菌中表达,应用Western—blot鉴定表达的目的蛋白,而后以该蛋白作为诊断抗原包被酶联卡反来检测20份SARS病人血清和28份健康人血清,结果原核表达的S蛋白能够和所用的SARS病人血清反应。这提示表达的S重组蛋白具有良好的抗原性。将变性纯化的重组蛋白和复性蛋白分别皮下免疫小鼠,第三次免疫一周后收集抗血清,用ELISA测定抗体和同时测定中和抗体活性。用变性的抗原免疫的小鼠血清均无中和活性;而用复性的蛋白免疫的小鼠产生了中和抗体。实验表明,S蛋白受体结合区无线性中和表位,中和抗体的产生是由构象表位诱导的。提示该蛋白有可能应用于亚单位疫苗的研究。  相似文献   

20.
Two Schistosoma mansoni cDNA clones 30S and 1H were identified by immunoscreening of sporocyst lambdagt11 library and by random sequencing of clones from lambdaZap libraries, respectively. Clone 30S was one of 30 clones identified by an antibody raised against tegument of 3-h schistosomules. The clone was found to encode an 81 amino-acid protein fragment. It was expressed in Escherichia coli as a fusion protein of calculated molecular mass of about 35 kDa with C-terminus of Schistosoma japonicum glutathione-S-transferase (Sj26; about 26 kDa). The recombinant fusion protein was specifically recognized by serum of rabbits immunized with irradiated cercariae. Clone 1H is one of 76 expressed sequence tags derived from an adult worm library. It encodes the complete sequence of a tegumental membrane protein, Sm13. The 104 amino-acid open reading frame encodes a protein with a calculated molecular mass of about 11.9 kDa. Clone 1H was expressed in E. coli as an insoluble fusion protein with Sj26 of about 40 kDa. In Western blots, the fusion protein was recognized by serum from rabbits vaccinated with irradiated cercariae but not by preimmune rabbit sera. The cloning, characterization and expression of those proteins are therefore potentially usefull for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号