首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
旨在构建内蒙古白绒山羊(Capra hircus)淋巴样增强因子-1(Lymphoid enhancer factor,LEF1)基因真核表达载体并转染胎儿成纤维细胞,获得稳定表达红色荧光蛋白及毛囊特异性表达LEF1的转基因细胞克隆。以pCDsRed2载体为基本骨架将LEF1基因亚克隆到KAP6-1启动子下游,连接红色荧光蛋白表达元件,构建LEF1基因毛囊特异表达载体pCDsRed-KL。外源表达载体以lipofectamineTM2000介导转染胎儿成纤维细胞,通过G418筛选获得稳定转染的细胞克隆。PCR鉴定外源基因在细胞基因组中的整合。测序显示构建的表达载体pCDsRed-KL序列中,LEF1基因正确连接在KAP6-1启动子下游,顺序连接CMV启动子和红色荧光蛋白基因,载体构建正确。脂质体介导的稳定转染效率约为14.0%,经G418筛选得到高效表达红色荧光蛋白转基因细胞克隆。PCR检测显示外源KAP6-1启动子和LEF1基因整合到胎儿成纤维细胞基因组中。  相似文献   

2.
目的:用缺口修复等技术构建Myostatin(肌肉生长抑制素,MSTN)基因打靶载体,并对大白猪胎儿成纤维体细胞进行转染,获得基因敲除细胞。方法与结果:首先构建用于MSTN基因同源长臂(LA)的抓捕载体,然后在大肠杆菌内利用Red同源重组系统介导的缺口修复,从含大白猪MSTN基因座的细菌人工染色体上亚克隆9.9 kb的LA到抓捕载体上,经过部分序列测定,同源性为100%;通过PCR获得1.4 kb的同源短臂(SA);将LA和SA连入载体pLOXP,构建含有neo和tk正负筛选标记基因的MSTN基因打靶载体pLOXP-MSTN-KO;将线性化的pLOXP-MSTN-KO通过电转染整合到大白猪胎儿成纤维细胞基因组中,利用G418和丙氧鸟苷进行药物筛选,获得抗性细胞克隆890个,通过PCR和DNA测序鉴定获得基因敲除的细胞克隆4个。结论:构建了有效的MSTN基因打靶载体,通过转染获得基因敲除细胞,为利用体细胞核移植制备MSTN基因敲除猪奠定了基础。  相似文献   

3.
基因打靶定点突变秦川牛MSTN基因   总被引:4,自引:0,他引:4  
Myostatin(MSTN,肌肉生长抑制素)基因属于TGF-β超家族,对骨骼肌的生长发育具有负调控作用。该基因的功能缺失,能够引起肉用动物的"双肌"表型,从而提高产肉率。基因打靶技术是制作转基因动物的常用方法。构建了两个置换型打靶载体pA2T-Mstn4.0和pA2T-Mstn3.2,通过同源重组将G938A突变点引入秦川牛MSTN基因第三外显子。电穿孔方法转染秦川牛胎儿成纤维细胞,经过600μg/mL G418和50nmol/L GCV的药物正负筛选,共得到170个药物抗性细胞克隆。对细胞克隆进行PCR、测序及Southern blotting鉴定,结果显示,第58号细胞克隆为发生了正确同源重组的中靶细胞。牛胎儿成纤维细胞中的MSTN基因的一条等位基因被成功改造。  相似文献   

4.
为获得整合有人血清白蛋白(HSA)基因的猪胎儿成纤维细胞克隆,从猪基因组文库中杂交筛选得到猪血清白蛋白(PSA)基因全序列35kb并克隆了人血清白蛋白cDNA序列,扩增猪血清白蛋白基因5′调控序列7.2kb片段及第一内含子至第四内含子2.8kb的片段;构建了含有neo及tk正负筛选标记基因的人血清白蛋白基因打靶载体,并验证了neo基因的有效性。将线性化的打靶载体通过电击转染的方法整合到猪胎儿成纤维细胞基因组中,利用G418及GANC进行细胞克隆的抗药性筛选,PCR及Southern blot鉴定抗药性细胞克隆,最终获得3个发生同源重组的细胞克隆。这为下一步进行体细胞核移植制备生产人血清白蛋白转基因猪奠定了基础。  相似文献   

5.
采用CRISPR/Cas9技术制备质粒HRX-2MCS和PX330,两种质粒转染湖北白猪胎儿成纤维细胞,G418筛选抗性细胞株。收集培养细胞提取总DNA,分子定位PCR法检测绿色荧光蛋白(GFP)基因在猪肌肉生长抑制素(MSTN)基因外显子上的定位整合情况,得到T1靶位点整合细胞5株和T3靶位点整合细胞3株。Q-PCR定量分析结果表明3108号阳性细胞株MSTN基因m RNA表达量减少50%,实验获得的基因敲除细胞可以用于体细胞核移植法制备MSTN基因敲除猪的研究。  相似文献   

6.
设计了以hSOD1、hSOD3为编码序列,以山羊β-酪蛋白/CMV杂合启动增强子构建乳腺特异性表达载体rhSOD1、rhSOD3,共转染母山羊胎儿成纤维细胞,采用PCR和扩增产物序列分析筛选获得SOD1/3克隆细胞株,应用体细胞核移植(SCNT)制备双转基因山羊。出生小羊经PCR和扩增产物序列分析验证是否成功整合外源基因,经Western blotting、ELISA及体外活性检来验证分析表达产物。结果表明:获得SOD1/3转基因山羊胎儿成纤维细胞系6株;原代双转基因体克隆山羊1只(♀);从该转基因羊乳汁中检测到rhSOD1、rhSOD3,浓度分别为:88.81±8.36 mg/L和267.82±12.67 mg/L;转基因羊乳汁中重组人SOD酶活性为1 432±157 U/mL。研究表明,以双载体和单标记基因转染山羊胎儿成纤维细胞可获得双基因整合转基因细胞系,并且以SOD1与SOD3功能基因均可在山羊乳腺中共同表达,表达产物具有较好的生物学活性。  相似文献   

7.
杨翠翠  佟慧丽  马兴红  杜巍  刘丹  杨宇  严云勤 《遗传》2014,36(7):685-690
肌肉生长抑制素(Myostatin, MSTN)基因能够负向调节骨骼肌的生长和发育, 牛MSTN基因突变会出现“双肌”特征。文章利用转录激活因子样效应物核酸酶(TALENs)靶向敲除牛胎儿成纤维细胞的MSTN基因, 获得敲除MSTN基因的细胞系, 为制备MSTN基因敲除牛提供材料。构建一对MSTN基因的TALENs真核表达载体, 分别采用PEI转染试剂和电穿孔法进行牛胎儿成纤维细胞的转染, 测序结果表明TALEN技术可用于敲除牛MSTN基因, 利用T7核酸内切酶1(T7E1)检测其突变效率, 结果显示电穿孔转染的敲除效率为20.4%。通过有限稀释法, 共获得10个MSTN基因敲除的细胞克隆(包括MSTN-/-和MSTN+/-), 其靶位点敲除的碱基数分别是1~20不等, 部分会出现移码突变。出现移码突变的细胞系可用于MSTN基因敲除的转基因肉牛的制备。  相似文献   

8.
敲除山羊胎儿成纤维细胞中的抗体重链基因   总被引:2,自引:0,他引:2  
在针对大动物的精确基因修饰研究中,基于体细胞的同源重组是唯一可行与有效的方法.其中,沉默基因位点的重组尤为困难.为获得抗体基因功能缺失的山羊用于人源化抗体的研究,通过体细胞同源重组技术,首次成功地获得了抗体基因敲除的山羊胎儿成纤维细胞株,该细胞株可用于体细胞克隆制备抗体基因功能缺失的转基因山羊.以35日龄的山羊胎儿成纤维细胞(GEF88)基因组DNA为模板,扩增山羊抗体重链J-Cμ基因作为同源臂,构建了同基因型的正负筛选打靶载体GTIgH.将此打靶载体经电穿孔的方法转染GEF88细胞,并通过0.8mg/L的嘌呤霉素进行药物筛选,获得了362个抗性细胞克隆,PCR、测序及DNA印迹鉴定结果显示,其中的GT211抗性细胞克隆为中靶细胞,该细胞克隆中的抗体重链基因的一条等位基因已被成功敲除.  相似文献   

9.
本研究旨在通过CRISPR/Cas9介导外源基因靶向插入鸡EAV-HP基因组。首先设计特异性引物并扩增鸡内源性病毒(EAV-HP)左右同源臂和增强型绿色荧光蛋白(eGFP)基因表达盒,然后通过重叠延伸PCR技术将两个同源臂DNA连接至eGFP表达盒两侧,获得全长DNA片段LER,并克隆至pMD19-T载体,获得携带eGFP基因的供体载体pMDT-LER。随后在HEK293T细胞中验证供体载体pMDT-LER能成功表达eGFP后,将EAV-HP打靶载体和供体载体共转染至DF-1细胞,观察绿色荧光阳性细胞,提取细胞基因组,PCR检测外源基因eGFP成功整合至鸡基因组EAV-HP位点。最后,将转基因细胞DF-1传至第7代,用PCR和Western blotting检测eGFP在转基因细胞中稳定表达。文中初步验证外源基因eGFP能整合至鸡EAV-HP位点并稳定表达,为转基因鸡的研究提供新整合位点。  相似文献   

10.
李兰  沈伟  潘庆玉  闵令江  孙玉江  房勇为  邓继先  潘庆杰 《遗传》2006,28(12):1513-1519
克隆了人lactoferrin基因和山羊[[beta]]-casein基因5′端调控区, 构建了人lactoferrin的乳腺表达载体, 并将该载体利用脂质体介导转染了奶山羊胎儿成纤维细胞, 获得了稳定整合人lactoferrin基因的转基因体细胞克隆17个, 其中PCR和Southern Blot检测阳性的细胞克隆14个, 阳性率82.4%。以转基因体细胞为供体细胞进行了核移植, 获得了能够体外发育的山羊转基因克隆胚胎, 体内成熟卵母细胞来源的核移植囊胚率为64.8%, 体外成熟卵母细胞来源的核移植囊胚率为51.7%, 证明了山羊转基因体细胞能够支持克隆胚的进一步发育。  相似文献   

11.
piggyBac转座子在牛基因组的整合位点及特征分析   总被引:1,自引:0,他引:1  
piggyBac(PB)转座子作为一种遗传工具被广泛应用于多个物种的转基因及插入突变研究, 目前PB转座子在牛中的相关研究还较少。为了获得PB转座子在牛基因组中的整合位点, 总结其转座特征, 文章构建了PB[CMV-EGFP]和pcDNA-PBase二元转座系统, 利用细胞核电转技术共转染牛耳组织成纤维细胞, 经G-418筛选, 获得了稳定转染EGFP的转基因细胞系; 提取细胞基因组DNA, 利用基因组步移技术扩增PB转座子5′ Bac区插入位置的DNA序列; 通过与牛基因组序列进行BLAST比对, 得到PB转座子在牛基因组中的插入位点。文章共获得了8个有效的整合位点, 但仅有5个位点定位到染色体1、2、11和X染色体上。序列分析表明:在牛基因组中, PB转座子可特异性的插入到“TTAA”位置, 并整合到基因间的非调控区; 分析整合位点“TTAA”相邻一侧的5个碱基组成, 发现PB转座子5′端倾向于插入到GC(62.5%)碱基富集区。该研究表明, PB转座子可以在牛基因组中发生转座, 获得的整合位点信息为利用PB转座子在牛上开展遗传学研究提供了理论参考。  相似文献   

12.
Production of transgenic calves expressing an shRNA targeting myostatin   总被引:3,自引:0,他引:3  
Myostatin (MSTN) is a well-known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN-null phenotype in a large-animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean-section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro-produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing.  相似文献   

13.
Generation of transgenic cattle by lentiviral gene transfer into oocytes   总被引:14,自引:0,他引:14  
The potential benefits of transgenic cattle range from the production of large quantities of pharmaceutically relevant proteins to agricultural improvement. However, the production of transgenic cattle is presently time-consuming and expensive because of the inefficiency of the classical DNA microinjection technique. Here, we report the use of lentiviruses for the efficient generation of transgenic cattle. Initial attempts to produce transgenic cattle by lentiviral infection of preimplantation embryos were not successful. In contrast, infection of bovine oocytes with lentiviral vectors carrying an enhanced green fluorescent protein (eGFP) expression cassette followed by in vitro fertilization resulted in the birth of transgenic calves. Furthermore, all of the calves generated by infection of oocytes were transgenic, and 100% of these animals expressed eGFP as detected by in vivo imaging and Western blotting. In addition, a transgenic calf was produced by infection of fetal fibroblasts followed by nuclear transfer into enucleated oocytes. Taken together, after adjusting lentiviral transgenesis to cattle, unprecedented high transgenesis and expression rates were achieved.  相似文献   

14.
The adeno-associated virus (AAV) is unique in its ability to target viral DNA integration to a defined region of human chromosome 19 (AAVS1). Since AAVS1 sequences are not conserved in a rodent’s genome, no animal model is currently available to study AAV-mediated site-specific integration. We describe here the generation of transgenic rats and mice that carry the AAVS1 3.5-kb DNA fragment. To test the response of the transgenic animals to Rep-mediated targeting, primary cultures of mouse fibroblasts, rat hepatocytes, and fibroblasts were infected with wild-type wt AAV. PCR amplification of the inverted terminal repeat (ITR)-AAVS1 junction revealed that the AAV genome integrated into the AAVS1 site in fibroblasts and hepatocytes. Integration in rat fibroblasts was also observed upon transfection of a plasmid containing the rep gene under the control of the p5 and p19 promoters and a dicistronic cassette carrying the green fluorescent protein (GFP) and neomycin (neo) resistance gene between the ITRs of AAV. The localization of the GFP-Neo sequence in the AAVS1 region was determined by Southern blot and FISH analysis. Lastly, AAV genomic DNA integration into the AAVS1 site in vivo was assessed by virus injection into the quadriceps muscle of transgenic rats and mice. Rep-mediated targeting to the AAVS1 site was detected in several injected animals. These results indicate that the transgenic lines are proficient for Rep-mediated targeting. These animals should allow further characterization of the molecular aspects of site-specific integration and testing of the efficacy of targeted integration of AAV recombinant vectors designed for human gene therapy.  相似文献   

15.
The mechanisms of recombination responsible for random integration of transfected DNA into the genome of normal human cells have been investigated by analysis of plasmid-cell DNA junctions. Cell clones containing integrated plasmid sequences were selected by morphological transformation of primary human fibroblasts after transfection with a plasmid containing simian virus 40 sequences. Nucleotide sequence analysis of the plasmid-cell DNA junctions was performed on cloned DNA fragments containing the integration sites from two of these cell clones. Polymerase chain reaction was then performed with human cell DNA from primary fibroblasts to isolate the cell DNA from the same sites before plasmid integration. Comparison of the sequences at the plasmid-cell DNA junctions with those of both the original plasmid and the cell DNA demonstrated short sequence similarities and additional nucleotides, typical of nonhomologous recombination. Evidence of short deletions in the cell DNA at the plasmid integration sites suggests that integration occurred by a mechanism similar to that used for repair of spontaneous or gamma ray-induced strand breaks. Plasmid integration occurred within nonrepetitive cell DNA with no major rearrangements, although rearrangements of the cell DNA at the integration site occurred in one of the clones after integration.  相似文献   

16.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

17.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

18.
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号