首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

2.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

3.
Activated ras genes transform REF52 cells only at low frequencies and adenovirus early region 1A collaborates with ras oncogenes to convert REF52 cells to a tumorigenic phenotype. While failure to transform did not result from an absence of ras gene expression, E1A appeared to enhance expression of transfected ras genes by approximately tenfold. However, enhanced ras expression alone does not account for collaboration by E1A since overexpression of T24 Ha-ras p21 induced morphological crisis and cell growth arrest rather than stable transformation. These results indicate that E1A contributes complementing biochemical activities that enable ras genes to transform REF52 and suggest that the role of E1A in primary cell transformation may extend beyond facilitating in vitro establishment.  相似文献   

4.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

5.
A temperature-sensitive mutant of p53, p53Val-135, was found to be able to arrest cell proliferation when overexpressed at 32.5 degrees C. While much of the protein was cytoplasmic in cells proliferating at 37.5 degrees C, it became predominantly nuclear at 32.5 degrees C. Concomitantly, p53Val-135 became destabilized, although not to the extent seen in primary fibroblasts.  相似文献   

6.
High levels of the p53 tumor suppressor protein can block progression through the cell cycle. A model system for the study of the mechanism of action of wild-type p53 is a cell line (T64-7B) derived from rat embryo fibroblasts transformed by activated ras and a temperature-sensitive murine p53 gene. At 37 to 39 degrees C, the murine p53 protein is in a mutant conformation and the cells actively divide, whereas at 32 degrees C, the protein has a wild-type conformation and the cells arrest in the G1 phase of the cell cycle. Wild-type simian virus 40 large T antigen and a variety of T-antigen mutants were assayed for the ability to bypass the cell cycle block effected by the wild-type p53 protein to induce colony formation at 32 degrees C. The results indicate that two functions within the amino terminus of T antigen are essential to induce cell growth: (i) the ability to bind to the retinoblastoma protein, Rb, and (ii) the presence of a domain in the first exon that appears to interact with the cellular protein, p300. Thus, the cell cycle arrest triggered by wild-type p53 may be overcome by formation of a T-antigen complex with Rb, p300, or both that could then function to either remove p53-mediated negative growth regulatory signals or promote a positive cell growth signal. Surprisingly, T antigen-p53 complexes are not required to overcome the temperature-sensitive p53 block to the cell cycle in these cells. These data suggest that simian virus 40 T antigen associated with Rb, p300, or both proteins can communicate in a cell with the functions of the wild-type p53 protein.  相似文献   

7.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

8.
p53 functions as a cell cycle control protein in osteosarcomas.   总被引:103,自引:35,他引:68       下载免费PDF全文
Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.  相似文献   

9.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

10.
The adenovirus E1A oncogene products stimulate DNA synthesis and cell proliferation but fail to transform primary baby rat kidney (BRK) cells because of the induction of p53-mediated programmed cell death (apoptosis). Overexpression of dominant mutant p53 (to abrogate wild-type p53 function) or introduction of apoptosis inhibitors, such as adenovirus E1B 19K or Bcl-2 oncoproteins, prevents E1A-induced apoptosis and permits transformation of BRK cells. The ability of activated Harvey-ras (H-ras) to cooperate with E1A to transform BRK cells suggests that H-ras is capable of overcoming the E1A-induced, p53-dependent apoptosis. We demonstrate here that activated H-ras was capable of suppressing apoptosis induced by E1A and wild-type p53. However, unlike Bcl-2 and the E1B 19K proteins, which completely block apoptosis but not p53-dependent growth arrest, H-ras expression permitted DNA synthesis and cell proliferation in the presence of high levels of wild-type p53. The mechanism by which H-ras regulates apoptosis and cell cycle progression is thereby strikingly different from that of the E1B 19K and Bcl-2 proteins. BRK cells transformed with H-ras and the temperature sensitive murine mutant p53(val 135), which lack E1A, underwent growth arrest at the permissive temperature for wild-type p53. p53-dependent growth arrest, however, could be relieved by E1A expression. Thus, H-ras alone was insufficient and cooperation of H-ras and E1A was required to override growth suppression by p53. Our data further suggest that two complementary growth signals from E1A plus H-ras can rescue cell death and thus permit transformation.  相似文献   

11.
12.
X Lu  S H Park  T C Thompson  D P Lane 《Cell》1992,70(1):153-161
Using a reconstituted mouse prostate organ, the effects on endogenous p53 expression of the ras oncogene or of the ras + myc oncogenes were investigated. In this system the ras gene alone causes mild hyperplasia, but the combination of ras and myc leads to the formation of carcinomas. Surprisingly, while p53 mutations were found in cells derived from the reconstituted organs containing ras alone, no such mutations were found in the ras + myc-transformed cells. Their growth, unlike that of the cells containing ras alone, was not inhibited by transfection with plasmids encoding wild-type human p53. We suggest that expression of both activated ras and myc genes bypasses the need for p53 mutation by neutralizing the tumor suppressor activity of normal p53.  相似文献   

13.
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.  相似文献   

14.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   

15.
The murine allele temperature-sensitive (ts) p53Val-135 encodes a ts p53 protein that behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. This ts allele was introduced into the p53 nonproducer Friend erythroleukemia cell line DP16-1. The DP16-1 cell line was derived from the spleen cells of a mouse infected with the polycythemia strain of Friend virus, and like other erythroleukemia cell lines transformed by this virus, it grows independently of erythropoietin, likely because of expression of the viral gp55 protein which binds to and activates the erythropoietin receptor. When incubated at 32 degrees C, DP16-1 cells expressing ts p53Val-135 protein, arrested in the G0/G1 phase of the cell cycle, rapidly lost viability and expressed hemoglobin, a marker of erythroid differentiation. Erythropoietin had a striking effect on p53Val-135-expressing cells at 32 degrees C by prolonging their survival and diminishing the extent of hemoglobin production. This response to erythropoietin was not accompanied by down-regulation of viral gp55 protein.  相似文献   

16.
Melanoma is the most aggressive of skin cancers because of its high resistance to currently available therapy. Although melanoma cells often retain wild-type p53 tumour suppressor protein and express it at high levels, the p53 mediated apoptosis pathway is suppressed. Histone deacetylase (HDAC) inhibitors are a promising group of compounds inducing differentiation, growth arrest and apoptosis in tumour cells in preclinical studies. We have studied the cellular effects of trichostatin A (TSA), a HDAC inhibitor, in a panel of melanoma cell lines and its mechanism of action in relation to p53. TSA stabilized wild-type p53, but p53 protein accumulation was overridden by simultaneous downregulation of p53 mRNA leading to a decrease in p53 protein. While growth arrest was induced in all cell lines studied and apoptosis in most (6/7), these cellular effects were independent of the p53 status of the cells. Inhibiting p53 function by a dominant negative p53 (p53(175His)) confirmed that the HDAC inhibitor induced apoptosis was independent of wild-type p53, even though TSA slightly activated p53 in a reporter assay. The results indicate that while the action of TSA is independent of p53, the activation of the apoptosis pathway by the HDAC inhibitors may provide therapeutic approaches for melanoma treatment.  相似文献   

17.
Activated Ras signaling can induce a permanent growth arrest in osteosarcoma cells. Here, we report that a senescence-like growth inhibition is also achieved in human carcinoma cells upon the transduction of H-Ras(V12). Ras-induced tumor senescence can be recapitulated by the transduction of activated, but not wild-type, MEK. The ability for H-Ras(V12) to suppress tumor cell growth is drastically compromised in cells that harbor endogenous activating ras mutations. Notably, growth inhibition of tumor cells containing ras mutations can be achieved through the introduction of activated MEK. Tumor senescence induced by Ras signaling can occur in the absence of p16 or Rb and is not interrupted by the inactivation of Rb, p107, or p130 via short hairpin RNA or the transduction with HPV16 E7. In contrast, inactivation of p21 via short hairpin RNA disrupts Ras-induced tumor senescence. In summary, this study uncovers a senescence-like program activated by Ras signaling to inhibit cancer cell growth. This program appears to be intact in cancer cells that do not harbor ras mutations. Moreover, cancer cells that carry ras mutations remain susceptible to tumor senescence induced by activated MEK. These novel findings can potentially lead to the development of innovative cancer intervention.  相似文献   

18.
Mouse temperature-sensitive p53(Val-135) accumulates in the nucleus and acts as a "wild-type" at 32 degrees C while it is sequestered in the cytoplasm at 37 degrees C. The cytoplasmic p53(Val-135) relocalized into the nucleus upon inhibition of the nuclear export at 37 degrees C, whereas a mutation in a major bipartite nuclear localization signal (NLS) caused constitutive cytoplasmic localization, indicating that it shuttled between the cytoplasm and the nucleus by its own nuclear export signal and NLS rather than tethered to cytoplasmic structures. Although the full-length p53(Val-135) did not bind the import receptor at 37 degrees C, a C-terminally truncated p53(Val-135) lacking residues 326-390 did bind it. Molecular chaperones such as Hsc70 were associated with p53(Val-135) at 37 degrees C but not at 32 degrees C. When the nuclear export was blocked by leptomycin B, only a fraction lacking Hsc70 was specifically accumulated in the nucleus. Immunodepletion of Hsc70 from the reticulocyte lysate caused p53(Val-135) to bind the import receptor. This binding was blocked by supplying the cell extract containing Hsc70 but not by the addition of recombinant Hsc70 alone. We suggest that the association with the Hsc70-containing complex prevents the NLS from the access of the import receptor through the C-terminal region of p53(Val-135) at 37 degrees C, whereas its dissociation at 32 degrees C allows rapid nuclear import.  相似文献   

19.
The p53 tumor suppressor protein induces transient growth arrest or apoptosis in response to genotoxic stress and mediates the irreversible growth arrest of cellular senescence. We present evidence here that p53 also contributes to the reversible, growth factor-dependent arrest of quiescence (G(0)). Microinjection of expression vectors encoding either MDM2 or a pRb-binding mutant of SV40 T antigen, both of which abrogate p53 function, stimulated quiescent normal human fibroblasts to initiate DNA synthesis and were 40-70% as effective as wild-type T antigen. Electrophoretic mobility shift and p53 transactivation assays showed that p53 activity was higher in quiescent and senescent cells compared with proliferating cells. As proliferating cells entered G(0) after growth factor withdrawal, the p53 mRNA level increased, followed by transient accumulation of the protein. Shortly thereafter, the expression (mRNA and protein) of p21, a p53 target gene and effector of cell cycle arrest, increased. Finally, stable expression of the HPV16 E6 oncogene or dominant negative p53 peptide, GSE-22, both of which inhibit p53 function, delayed entry into quiescence following growth factor withdrawal. Our data indicate that p53 is activated during both quiescence and senescence. They further suggest that p53 activity contributes, albeit not exclusively, to the quiescent growth arrest.  相似文献   

20.
Adenovirus (Ad) E1A induces apoptosis in cells expressing wild-type p53, and stable transformation by Ad E1A requires the co-introduction of an anti-apoptotic gene such as Ad E1B 19K. Thus, cells immortalized by Ad E1A alone might have lost functional p53. In order to analyze the p53 in rat cells expressing Ad E1A, we established rat cell lines by transfecting primary rat embryo fibroblast (REF) and baby rat kidney (BRK) cells with cloned Ad5 E1A. By using a yeast functional assay, we analyzed p53 in six primary REF and three BRK cell lines immortalized by Ad5 E1A as well as five spontaneously immortalized rat cell lines (REF52, NRK, WFB, Rat-1 and 3Y1). The yeast functional assay revealed that all of the spontaneously and Ad5 ElA-immortalized rat cell lines except for 3Y1 expressed wild-type p53. All of the Ad5 E1A-immortalized rat cell lines contained p53 detectable by immunoprecipitation. Recombinant adenovirus expressing rat p53 cloned from a REF cell line immortalized by Ad5 E1A, as well as that expressing murine wild-type p53, induced apoptosis in p53-null cells in collaboration with E1A. Thus, it is suggested that the mutation of p53 appears to be not frequent in the spontaneous immortalization of primary rat cells, and that the functional loss of wild-type p53 is not a prerequisite of E1A-mediated immortalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号