首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  完全免费   5篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.
The p53 proto-oncogene can act as a suppressor of transformation   总被引:228,自引:0,他引:228  
C A Finlay  P W Hinds  A J Levine 《Cell》1989,57(7):1083-1093
DNA clones of the wild-type p53 proto-oncogene inhibit the ability of E1A plus ras or mutant p53 plus ras-activated oncogenes to transform primary rat embryo fibroblasts. The rare clones of transformed foci that result from E1A plus ras plus wild-type p53 triple transfections all contain the p53 DNA in their genome, but the great majority fail to express the p53 protein. The three cell lines derived from such foci that express p53 all produce mutant p53 proteins with properties similar or identical to transformation-activated p53 proteins. The p53 mutants selected in this fashion (transformation in vitro) resemble the p53 mutants selected in tumors (in vivo). These results suggest that the p53 proto-oncogene can act negatively to block transformation.  相似文献
2.
The retinoblastoma susceptibility gene (RB) product, the retinoblastoma protein (pRb), functions as a regulator of cell proliferation. Introduction of the RB gene into SAOS-2 osteosarcoma cells, which lack functional pRb, prevents cell cycle progression. Such growth-suppressive functions can be modulated by phosphorylation of pRb, which occurs via cell cycle-regulated kinases. We show that constitutively expressed cyclins A and E can overcome pRb-mediated suppression of proliferation. pRb becomes hyperphosphorylated in cells overexpressing these cyclins, and this phosphorylation is essential for cyclin A- and cyclin E-mediated rescue of pRb-blocked cells. This suggests that G1 and S phase cyclins can act as regulators of pRb function in the cell cycle by promoting pRb phosphorylation.  相似文献
3.
The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246+ and PAb246-, which did or did not bind to this monoclonal antibody, respectively. The PAb246- p53 preferentially associated with hsc70, and this protein had a half-life 4- to 20-fold longer than free p53 (PAb246+). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.  相似文献
4.
The majority of the p53 genes derived from human colorectal carcinomas contain point mutations. A significant number of these mutations occur in or around amino acids 143, 175, 273, or 281. Experiments presented here demonstrate for the first time that p53 DNA clones containing any one of these mutations cooperate with the activated ras oncogene to transform primary rat embryo cells in culture. These transformed cells produce elevated levels of the human p53 protein, which has extended half-lives (1.5-7 h), as compared to the wild-type human p53 protein (20-30 min). The p53 mutant with an alteration at residue 175 (p53-175H) binds tightly to the cellular heat shock protein, hsc70. In contrast, the p53 mutants possessing mutations at either residue 273 or 281 (p53-273H/281G) do not bind detectably to this heat shock protein and generally are less efficient at forming transformed foci in culture. The transformed cell lines are tumorigenic in nude mice. Thus, two classes of p53 mutant proteins can be distinguished: p53-175H, which cooperates with ras efficiently and binds to hsc70, and p53-273H/281G, which has a reduced efficiency of transformed foci formation and does not bind hsc70. This demonstrates that complex formation between mutant p53 and hsc70 is not required for p53-mediated transformation, but rather it facilitates this function, perhaps by ensuring sequestration of the endogenous wild-type p53 protein. The positive effect on cell proliferation by these mutant p53 proteins is consistent with a role for activated p53 mutants in the genesis of colorectal carcinomas.  相似文献
5.
A rabbit antiserum was prepared against the C-terminal peptide of 21 amino acids from the human heat shock protein hsp70. These antibodies were shown to be specific for this highly inducible heat shock protein (72 kilodaltons [kDa] in rat cells), and for a moderately inducible, constitutively expressed heat shock protein, hsc70 (74 kDa). In six independently derived rat cell lines transformed by a murine cDNA-genomic hybrid clone of p53 plus an activated Ha-ras gene, elevated levels of p53 were detected by immunoprecipitation by using murine-specific anti-p53 monoclonal antibodies. In all cases, the hsc70, but not the hsp70, protein was coimmunoprecipitated with the murine p53 protein. Similarly, antiserum to heat shock protein coimmunoprecipitated p53. Western blot (immunoblot) analysis demonstrated that the hsc70 and p53 proteins did not share detectable antigenic epitopes. The results provide clear immunological evidence for the specific association of a single heat shock protein, hsc70, with p53 in p53-plus-ras-transformed cell lines. A p53 cDNA clone, p11-4, failed to produce clonable cell lines from foci of primary rat cells transfected with p11-4 plus Ha-ras. A mutant p53 cDNA clone derived from p11-4, SVKH215, yielded a 2- to 35-fold increase in the number of foci produced after transfection of rat cells with SVKH215 plus Ha-ras. When cloned, 87.5% of these foci produced transformed cell lines. SVKH215 encodes a mutant p53 protein that binds preferentially to the heat shock proteins of 70 kDa compared with binding by the parental p11-4 p53 gene product. These data suggest that the p53-hsc70 protein complex could have functional significance in these transformed cells.  相似文献
6.
Oligomeric protein complexes containing the nuclear oncogene p53 and the simian virus 40 large tumor antigen (D. I. H. Linzer and A. J. Levine, Cell 17:43-51, 1979), the adenovirus E1B 55-kilodalton (kDa) tumor antigen, and the heat shock protein hsc70 (P. Hinds, C. Finlay, A. Frey, and A. J. Levine, Mol. Cell. Biol. 7:2863-2869, 1987) have all been previously described. To begin isolating, purifying, and testing these complexes for functional activities, we have developed a rapid immunoaffinity column purification. p53-protein complexes are eluted from the immunoaffinity column by using a molar excess of a peptide comprising the epitope recognized by the p53 monoclonal antibody. This mild and specific elution condition allows p53-protein interactions to be maintained. The hsc70-p53 complex from rat cells is heterogeneous in size, with some forms of this complex associated with a 110-kDa protein. The maximum apparent molecular mass of such complexes is 660,000 daltons. Incubation with micromolar levels of ATP dissociates this complex in vitro into p53 and hsc70 110-kDa components. Nonhydrolyzable substrates of ATP fail to promote this dissociation of the complex. Murine p53 synthesized in Escherichia coli has been purified 660-fold on the same antibody affinity column and was found to be associated with an E. coli protein of 70 kDa. Immunoblot analysis with specific antisera demonstrated that this E. coli protein was the heat shock protein dnaK, which has extensive sequence homology with the rat hsc70 protein. Incubation of the immunopurified p53-dnaK complex with ATP resulted in the dissociation of the p53-dnaK complex as it did with the p53-hsc70 complex. This remarkable conservation of p53-heat shock protein interactions and the specificity of dissociation reactions suggest a functionally important role for heat shock proteins in their interactions with oncogene proteins.  相似文献
7.
8.
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.  相似文献
9.
10.
Codon usage tables have been produced for E. coli, yeast, human, and mouse. The nonrandom employment of codons allows assignment of probability values to trinucleotides in any DNA sequence. These values represent the probability that a given trinucleotide is used as a codon in the organism from which the table is derived. For the graphical delineation of coding areas in DNA sequences, a probability is assigned to each trinucleotide equal to its frequency in the codon table. Averaging and smoothing procedures then greatly enhance the detectability of areas of high average codon probability and better represent the mean codon probability. These manipulations increase graphical clarity without altering the overall magnitude of probabilities. Averaging introduces an error of less than 0.5% between "raw" and smoothed data. This graphical delineation of coding sequences does not depend on the presence of punctuation, ribosomal binding sites, etc: moreover the delineation of introns and exons is also possible.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号