首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A temperature-sensitive mutant of murine p53 (p53Val-135) was transfected by electroporation into murine erythroleukemia cells (DP16-1) lacking endogenous expression of p53. While the transfected cells grew normally in the presence of mutant p53 (37.5 degrees C), wild-type p53 (32.5 degrees C) was associated with a rapid loss of cell viability. Genomic DNA extracted at 32.5 degrees C was seen to be fragmented into a characteristic ladder consistent with cell death due to apoptosis. Following synchronization by density arrest, transfected cells released into G1 at 32.5 degrees C were found to lose viability more rapidly than did randomly growing cultures. Following release into G1, cells became irreversibly committed to cell death after 4 h at 32.5 degrees C. Commitment to cell death correlated with the first appearance of fragmented DNA. Synchronized cells allowed to pass out of G1 prior to being placed at 32.5 degrees C continued to cycle until subsequently arrested in G1; loss of viability occurred following G1 arrest. In contrast to cells in G1, cells cultured at 32.5 degrees C for prolonged periods during S phase and G2/M, and then returned to 37.5 degrees C, did not become committed to cell death. G1 arrest at 37.5 degrees C, utilizing either mimosine or isoleucine deprivation, does not lead to rapid cell death. Upon transfer to 32.5 degrees C, these G1 synchronized cell populations quickly lost viability. Cells that were kept density arrested at 32.5 degrees C (G0) lost viability at a much slower rate than did cells released into G1. Taken together, these results indicate that wild-type p53 induces cell death in murine erythroleukemia cells and that this effect occurs predominantly in the G1 phase of actively cycling cells.  相似文献   

2.
Mouse temperature-sensitive p53(Val-135) accumulates in the nucleus and acts as a "wild-type" at 32 degrees C while it is sequestered in the cytoplasm at 37 degrees C. The cytoplasmic p53(Val-135) relocalized into the nucleus upon inhibition of the nuclear export at 37 degrees C, whereas a mutation in a major bipartite nuclear localization signal (NLS) caused constitutive cytoplasmic localization, indicating that it shuttled between the cytoplasm and the nucleus by its own nuclear export signal and NLS rather than tethered to cytoplasmic structures. Although the full-length p53(Val-135) did not bind the import receptor at 37 degrees C, a C-terminally truncated p53(Val-135) lacking residues 326-390 did bind it. Molecular chaperones such as Hsc70 were associated with p53(Val-135) at 37 degrees C but not at 32 degrees C. When the nuclear export was blocked by leptomycin B, only a fraction lacking Hsc70 was specifically accumulated in the nucleus. Immunodepletion of Hsc70 from the reticulocyte lysate caused p53(Val-135) to bind the import receptor. This binding was blocked by supplying the cell extract containing Hsc70 but not by the addition of recombinant Hsc70 alone. We suggest that the association with the Hsc70-containing complex prevents the NLS from the access of the import receptor through the C-terminal region of p53(Val-135) at 37 degrees C, whereas its dissociation at 32 degrees C allows rapid nuclear import.  相似文献   

3.
The murine allele temperature-sensitive (ts) p53Val-135 encodes a ts p53 protein that behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. This ts allele was introduced into the p53 nonproducer Friend erythroleukemia cell line DP16-1. The DP16-1 cell line was derived from the spleen cells of a mouse infected with the polycythemia strain of Friend virus, and like other erythroleukemia cell lines transformed by this virus, it grows independently of erythropoietin, likely because of expression of the viral gp55 protein which binds to and activates the erythropoietin receptor. When incubated at 32 degrees C, DP16-1 cells expressing ts p53Val-135 protein, arrested in the G0/G1 phase of the cell cycle, rapidly lost viability and expressed hemoglobin, a marker of erythroid differentiation. Erythropoietin had a striking effect on p53Val-135-expressing cells at 32 degrees C by prolonging their survival and diminishing the extent of hemoglobin production. This response to erythropoietin was not accompanied by down-regulation of viral gp55 protein.  相似文献   

4.
The p53 gene is a suppressor of abnormal cell growth but is also subject to oncogenic activation by mutation. The mutant allele p53-Val135, has recently been discovered to be temperature-sensitive and functions as an oncogene at 37 degrees C and as a tumor suppressor at 32.5 degrees C. In order to investigate the molecular mechanism underlying the temperature sensitivity of p53-Val135 rabbit reticulocyte lysate was used to translate the p53 mRNAs in vitro at 37 degrees C and at 30 degrees C. The immunoreactivity and T antigen binding of wild-type protein p53-Ala135 were unaffected by temperature and were similar to wild-type p53 expressed in vivo. In contrast, the mutant p53-Val135 protein was markedly affected by temperature. At 37 degrees C p53-Val135 showed reduced T antigen binding and did not react with monoclonal antibodies PAb246 and PAb1620. At 30 degrees C, p53-Val135 behaved as the wild-type p53. Temperature also exerted a post-translational effect on p53-Val135 with complete conversion from wild-type to mutant phenotype within two minutes of temperature shift from 30 degrees C to 37 degrees C. There was incomplete conversion from mutant to wild-type phenotype when the temperature was shifted down from 37 degrees C to 30 degrees C. We propose that the temperature dependent forms of p53-Val135 represent conformational variants of the p53 protein with opposing functions in cell growth control.  相似文献   

5.
6.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

7.
D Michalovitz  O Halevy  M Oren 《Cell》1990,62(4):671-680
Mutant p53 can contribute to transformation, while wild-type (wt) p53 is not oncogenic and actually inhibits transformation. Furthermore, wt p53 may act as a suppressor gene in human carcinogenesis. We now describe the temperature-sensitive behavior of a particular mutant, p53val135. Like other p53 mutants, it can elicit transformation at 37.5 degrees C. However, at 32.5 degrees C it suppresses transformation, behaving like authentic wt p53. Moreover, the proliferation of transformed cells expressing p53val135 is dramatically inhibited at the permissive temperature. Significantly, the inhibition of both transformation and proliferation is reversible upon temperature upshift. These data demonstrate that the ability of wt p53 to suppress transformation is not due to a general lethal effect, but rather to a reversible growth arrest. p53val135 may prove instrumental for gaining insight into the cellular and molecular properties of wt p53.  相似文献   

8.
9.
Y Barak  M Oren 《The EMBO journal》1992,11(6):2115-2121
To explore the biochemical functions of p53, we have initiated a search for cellular p53-binding proteins. Coprecipitation of three polypeptides was observed when cell lines overexpressing a temperature-sensitive (ts) p53 mutant were maintained at 32.5 degrees C (wild-type p53 activity, leading to growth arrest) but not at 37.5 degrees C (mutant p53 activity). One of these three proteins, designated p95 on the basis of its apparent molecular mass, was highly abundant in p53 immune complexes. We demonstrate herein that p95 is a p53-binding protein, which exhibits poor p53-binding in cells overproducing several distinct mutant p53 proteins. Yet, p95 associates equally well with both the wild-type (wt) and the mutant conformations of the ts p53 in transformed cells growth-arrested at 32.5 degrees C. On the basis of our findings we suggest that wt p53 activity increases p53-p95 complex formation and that such interaction may play a central role in p53 mediated tumour suppression.  相似文献   

10.
A temperature-sensitive mutant of human p53.   总被引:16,自引:5,他引:11       下载免费PDF全文
W Zhang  X Y Guo  G Y Hu  W B Liu  J W Shay    A B Deisseroth 《The EMBO journal》1994,13(11):2535-2544
  相似文献   

11.
We have previously reported that in cells ectopically expressing temperature-sensitive p53(135val) mutant, p53 formed tight complexes with poly(ADP-ribose) polymerase (PARP). At elevated temperatures, p53(135val) protein, adopting the mutant phenotype, was localized in the cytoplasm and sequestered the endogenous PARP. To prove whether an excess of p53(135val) protein led to this unusual intracellular distribution of PARP, we have established cell lines overexpressing p53(135val) + c-Ha-ras alone or in combination with PARP. Interestingly, immunostaining revealed that PARP is sequestered in the cytoplasm by mutant p53 in cells overexpressing both proteins. Simultaneous overexpression of PARP had no effect on temperature-dependent cell proliferation and only negligibly affected the kinetics of p53-mediated G(1) arrest. However, if the cells were completely growth arrested at 32 degrees C and then shifted up to 37 degrees C, coexpressed PARP dramatically delayed the reentry of transformed cells into the cell cycle. Even after 72 h at 37 degrees C the proportion of S-phase cells was reduced to 20% compared to those expressing only p53(135val) + c-Ha-ras. The coexpressed PARP stabilized wt p53 protein and its enzymatic activity was necessary for stabilization.  相似文献   

12.
As an approach to defining the role of p53 in cellular proliferation, murine cell lines were derived which contain a stably transfected temperature-inducible p53 expression system. Cell lines derived with the system exhibited a 3-6-fold physiologic elevation in the cellular p53 concentration when grown at 32.5 degrees C. A p53 induction phenotype was defined by examination of the growth properties of these lines at 32.5 degrees C. The induction phenotype had three main features: 1) a 2-4-fold increase in doubling time and biphasic growth kinetics; 2) delayed early S phase transit; and 3) complete reversibility either by growth at 37 degrees C or by growth in the presence of added hypoxanthine or xanthosine. The reversal of the induction phenotype by these purine salvage precursors implicated the purine nucleotide biosynthetic pathway as the cellular target for the antiproliferative action of p53. Subsequent genetic and biochemical analyses identified a p53 induction-related purine pathway defect which was localized to the step of inosine 5'-monophosphate conversion to xanthosine 5'-monophosphate. This enzymatic step catalyzed by inosine 5'-monophosphate dehydrogenase (EC 1.2.1.14) is the rate-limiting step for GTP synthesis. Extracts from p53-inducible cells growing at the induction temperature show a specific reduction in inosine 5'-monophosphate dehydrogenase enzymatic activity. These findings define p53 as a cellular regulator of the synthesis of GTP, a key regulatory nucleotide for many important cellular processes. Moreover, observations of the growth behavior of p53-inducible cells suggest that by regulating the production of GTP, p53 can control cellular quiescence.  相似文献   

13.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

14.
Utilizing a temperature sensitive p53 mutant (pLTRp53cGval135) which expresses mutant p53 at 37 degrees C and a wild-type like p53 at 32 degrees C, we transfected a human ovarian cancer cell line (SKOV3) which does not express endogenous p53. Among the different clones obtained, we selected three clones. Two were obtained from simultaneous transfection of p53 and neomycin resistance expression plasmids (SK23a and SK9), the other was obtained from transfection experiments utilizing the neomycin resistance gene only (SKN). Introduction of mutant p53 did not alter the morphology or growth characteristics of this ovarian cancer cell line. Upon shifting to the permissive temperature, a dramatic change in morphology and growth rate was observed in SK23a and SK9 cells that is associated with the presence of a wild-type like p53. SKN and SKOV3 cells maintained at 32 degrees C did not change morphology and only slightly reduced proliferation. Both SK23a and SK9 cells did not show evidence of apoptosis when measured up to 72 hours of maintenance at 32 degrees C. In contrast to what observed in other cell lines, SK23a and SK9 cells maintained at 32 degrees C were not blocked in G1, but they were accumulated in G2-M. This accumulation was transient and could be due either to a blockade or to a delay in the G2 progression. No down-regulation of c-myc was observed in p53 expressing clones when shifted to the permissive temperature. In these conditions gadd45 mRNA expression was highly stimulated in SK9 and SK23a cells but not in SKN cells. In both clones Gas1 mRNA was not detected either at 37 degrees C or 32 degrees C. This system represents a new and useful model for studying the effect of the absence of p53 (SKOV3 or SKN), presence of mutated p53 (SK23a and SK9 kept at 37 degrees C) or wild type p53 (SK23a and SK9 kept at 32 degrees C) on the mechanism of response of cancer cells to DNA damaging agents.  相似文献   

15.
Heat shock protein (HSP)105 is a testis-specific and HSP90-related protein. The aim of this study was to explore the functions of HSP105 in the rat testis. Signals of HSP105 were detected immunohistochemically in the germ cells and translocated from the cytoplasm to the nucleus at 2 days after experimental induction of cryptorchidism. In cultured testicular germ cells, a significant increase in the expression of HSP105 in response to heat stress (37 degrees C) was detected in the insoluble protein fractions. Several binding proteins were isolated from rat testis using a HSP105 antibody immunoaffinity column, and p53, the tumor suppressor gene product, was copurified with these. Furthermore, immunoprecipitation using antibodies to p53 led to coprecipitation of HSP105 together with p53 after culturing germ cells at 32.5 degrees C, but not at 37 or 42 degrees C. In conclusion, HSP105 is specifically localized in the germ cells and may translocate into the nucleus after heat shock. HSP105 is suggested to form a complex with p53 at the scrotal temperature, and dissociate from it at suprascrotal temperatures. At scrotal temperature, HSP105 may thus contribute to the stabilization of p53 proteins in the cytoplasm of the germ cells, preventing the potential induction of apoptosis by p53.  相似文献   

16.
Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.  相似文献   

17.
18.
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.  相似文献   

19.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

20.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号