首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
核糖核酸酶抑制剂(Ribonuclease inhibitor, RI)是一种细胞内能够调节核糖核酸酶活性的胞浆蛋白,在分子生物学涉及RNA的实验中有广泛应用。商品化的小鼠RI(mRI)宣称其可能具有较高的氧化抗性。为获得mRI在大肠杆菌宿主中可溶性活性产物的有效重组表达,构建了含有mRI编码基因的重组质粒载体,在几种不同工程菌中进行了mRI蛋白的表达纯化,并观察了其氧化抗性特征。简单的组氨酸标签融合,即可在蛋白酶基因缺陷的BL21衍生的宿主菌中,经过适当诱导,获得较高水平活性产物的可溶性表达。纯化后产量在4~8mg/L水平,接近其他种属RI特殊优化表达系统的最高产量。该重组mRI与重组人RI(hRI)具有基本一致的核糖核酸酶抑制活性和抗氧化作用,与前人推测的抗氧化特征不同。  相似文献   

2.
来源于蛙属的核糖核酸酶由于具有显著的抗肿瘤活性而备受关注,Rdrlec是从中国林蛙基因组中克隆得到的核糖核酸酶新基因。获得大量高纯度野生型重组蛋白是研究其功能的基础。按照大肠杆菌偏好的密码子人工合成Rdrlec基因,通过EcoR I和Hind III位点插入到表达载体pET-32a(+)中构建pET32-Rdrlec重组表达质粒,转化到Escherichia coli BL21(DE3)中,0.4 mmol/L IPTG 30℃诱导6 h后,融合蛋白主要以可溶形式表达,经过Ni-NTA亲和纯化和Sephadex G75层析纯化,得到电泳纯融合蛋白。肠激酶切割后得到Rdrlec野生型重组蛋白,具有降解RNA的酶活性,证明分子的空间结构已经正确形成。Rdrlec野生型重组蛋白表达成功,为后续蛋白结构与功能的研究以及进一步的开发应用提供了原料。  相似文献   

3.
目的建立稳定高表达人核糖核酸酶抑制因子(hRI)的真核细胞系:乳腺癌细胞系,为进一步研究hRI抗肿瘤、抗氧化的作用机制奠定实验基础。方法将hRI通过逆转录病毒载体(pLNCX-hRI)经过病毒包装细胞(PA317)包装后的高滴度病毒上清,感染乳腺癌(MCF-7)细胞系,经G418筛选后,运用RT-PCR、Western blot等方法进行鉴定hRI在MCF-7中的高表达。结果hRI克隆到乳腺癌细胞(MCF-7)基因组,并随着基因组稳定高表达hRI。结论利用逆转录病毒载体感染真核细胞后获得高表达hRI的肿瘤细胞株,从而为进一步研究真核细胞内hRI的抗肿瘤作用机制提供条件。  相似文献   

4.
目的构建HBVDNAPTP1基因的原核表达载体,诱导其在大肠埃希菌中表达,并对融合蛋白进行纯化。方法利用逆转录-PCR获得乙型肝炎病毒(HBV)DNA聚合酶(Polymerase)反式调节人类新基因HBVD-NAPTP1,测序正确后插入至原核表达载体pET-32a(+)中,转化BL21(DE3)宿主菌进行诱导,并利用组氨酸亲和层析方法对融合蛋白进行纯化。结果 HBVDNAPTP1原核表达载体转化宿主菌后,经0.5 mmol/L IPTG、30℃诱导5 h获得了分子量约为31 kD的HBVDNAPTP1融合蛋白的优化表达,Western blotting证实融合蛋白的特异性。亲和层析纯化后得到较纯的HBVDNAPTP1融合蛋白,每升培养菌液中可获得2.24 mg的纯化蛋白。结论成功获得纯化的HBVDNAPTP1融合蛋白,为今后开展HBVDNAPTP1的生物学功能研究奠定了物质基础。  相似文献   

5.
天花粉蛋白 (Trichosanthin ,TCS)全长基因通过PCR从 pCDNA3 1中获得 ,克隆至表达载体中。双向测序表明获得的天花粉蛋白全长基因序列正确。建立大肠杆菌原核表达系统 ,表达并纯化His TCS活性融合蛋白 ,鉴定出其具有RNAN 糖苷酶活性和与TCS特异性单克隆抗体TE1 (IgE)结合的抗原活性  相似文献   

6.
为了探究粗枝云杉(Picea asperata)病程相关蛋白PR10的核糖核酸酶活性,该研究以粗枝云杉一年生针叶为材料,以响应云杉落针病菌(Lophodermium piceae)侵染而显著上调的一个PR10基因(PaPR10)序列为研究对象,设计特异性引物,采用RT PCR技术克隆获得PaPR10基因的cDNA序列全长,使用生物信息学软件预测该基因编码蛋白的序列特征,将该基因进行原核表达和纯化,利用底物法检测纯化蛋白的核糖核酸酶活性,为解析PR10基因的抗菌活性机理奠定基础。结果表明:(1)成功克隆到PaPR10基因(GenBank登录号为OM743228)的ORF长456 bp,编码151个氨基酸序列,相对分子量为16.52 kD,理论等电点为5.73。(2)PaPR10蛋白无信号肽、不含跨膜区、定位在细胞质中,具有典型的病程相关蛋白Bet_v_1家族保守结构域和一个富含甘氨酸环(P Loop)的保守结构域,但PaPR10蛋白的P Loop结构域存在一个碱基突变;PaPR10蛋白与北美云杉等多种裸子植物和部分苔藓植物的PR10蛋白相似性较高。(3)IPTG诱导下,PaPR10蛋白以可溶性蛋白和包涵体的形式并存,且以终浓度为0.8 mmol/L的IPTG在30 ℃下诱导10 h时表达量最佳,但纯化后的PaPR10可溶性蛋白没有核糖核酸酶活性。研究发现,PaPR10蛋白不具备核糖核酸酶活性。  相似文献   

7.
目的:表达风疹病毒(RV)E1特异肽段的重组融合蛋白.方法:经过双酶切鉴定和测序鉴定的阳,陛重组质粒载体pGEX-2T/E1-N,转化到感受态大肠杆菌BL21后,用异丙基-β-D硫代半乳糖苷(IPTG)诱导其表达,并对诱导条件进行优化.用谷胱甘肽琼脂糖珠纯化重组融合蛋白,SDS-PAGE鉴定.结果:用IPTG可以诱导E1特异肽段的重组融合蛋白表达,37℃诱导时,最佳诱导剂浓度为1 mmol/L,最佳诱导时间为4h.诱导温度从37℃降至16℃时,重组融合蛋白以可溶性形式表达,用谷胱甘肽琼脂糖珠纯化获得了纯化的重组融合蛋白.结论:利用原核表达系统可以获得纯化的风疹病毒E1特异肽段的重组融合蛋白.  相似文献   

8.
人细胞核dUTPase的克隆表达及其酶学活性   总被引:2,自引:0,他引:2  
以阿尔茨海默病 (Alzheimer’sdisease ,AD)患者脑cDNA文库质粒为模板 ,用PCR方法扩增得到人细胞核dUTP焦磷酸酶 (dUTPase)的cDNA ,将其克隆到谷胱甘肽 S 转移酶 (GST)融合表达载体pGEX 4T 1中 ,并在大肠杆菌BL2 1中获得高效表达 .表达的融合蛋白GST dUTPase经过谷胱甘肽 Sepharose 4B亲和层析 ,凝血酶酶切和SephacrylS 10 0纯化 ,得到高纯度dUTPase蛋白 .通过SDS PAGE ,氨基酸组成分析 ,N端氨基酸序列测定以及HPLC测Mr 结果与期望值一致 .通过检测该酶水解dUTP释放的焦磷酸 (PPi)来测定表达产物dUTPase蛋白及GST dUTPase融合蛋白的酶活性 ,发现两蛋白都具有正常的酶水解dUTP活性 ,但融合蛋白的活性比dUTPase蛋白低 7~ 8倍 .同时研究了Mg2 +和EDTA对酶活性的影响  相似文献   

9.
目的构建SAP 2重组原核表达载体并表达、纯化出可溶性的蛋白,为抗体制备及Sap2抗原检测奠定基础。方法提取白念珠菌基因组DNA为模板,经PCR方法获取SAP 2目的基因。双酶切SAP 2基因与原核表达载体pMAL-c2x(+),连接酶切产物,转化大肠杆菌TOP10感受态细菌,筛选菌落和测序鉴定。将pMAL-c2x/SAP2重组质粒转化大肠杆菌BL21(DE3)感受态细胞,经异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达出可溶性的融合蛋白,经直链淀粉树脂亲和层析、蛋白酶Factor Xa切割标签获得纯化的Sap2蛋白。结果经PCR扩增获得正确的SAP 2序列并定向插入原核表达载体pMAL-c2x(+)中。重组原核表达载体pMAL-c2x/SAP2经IPTG诱导14 h后表达出可溶性的融合蛋白,并经纯化、切除标签后得到目的蛋白。结论成功构建了白念珠菌天冬氨酸蛋白酶原核表达质粒pMAL-c2x/SAP2,该质粒在BL21(DE3)中可获得高效融合表达,通过亲和层析纯化及标签切割得到了氨基酸序列同天然蛋白一致的目的蛋白。  相似文献   

10.
构建小鼠β-防御素-2( mouse beta defensins 2,mBD2)原核表达质粒pET32/mBD2,进行蛋白诱导表达及纯化,测定并纯化蛋白的抗菌活性.旨在为选一步研究其生物学特性奠定基础.通过腹腔注射脂多糖(lipopoly-saccharide,LPS)建立小鼠急性时相反应,采用RT-PCR方法扩增mBD2成熟肽,经KpnⅠ和XhoⅠ双酶切后插入相同酶切的pET-32a(+)载体,构建的重组质粒.将鉴定正确的重组质粒转化大肠杆菌表达菌株BL21 (DE3),采用异丙基-D-硫代半乳糖苷(IPTG)诱导融合蛋白的表达.通过镍亲和层析获得纯化的融合蛋白.将融合蛋白采用肠激酶酶切、洗脱并用滤纸片法测定目的蛋白的抗菌活性.成功构建了原核表达质粒pET32a(+)/mBD2,并转化工程菌BL21( DE3).在0.25 mmol/L IPTG、30℃诱导4h条件下获得的融合蛋白.采用抑菌试验证实蛋白具有一定的抑制革兰阳性菌及阴性菌生长的作用.本研究成功构建了pET32/mBD2原核表达质粒,得到了在大肠杆菌中稳定表达mBD2蛋白.  相似文献   

11.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

12.
Variants of ribonuclease inhibitor that resist oxidation   总被引:1,自引:0,他引:1       下载免费PDF全文
Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.  相似文献   

13.
The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein–protein interactions.  相似文献   

14.
RNase L is part of the innate immune response to viral infection. It is activated by a small oligonucleotide (2–5A) whose synthesis is initiated as part of the interferon response. Binding of 2–5A to the N-terminal regulatory region, the ANK domain, of RNase L activates its ribonuclease activity and results in cleavage of RNA in the cell, which ultimately leads to apoptosis of the infected cell. The mechanism by which 2–5A activates the ribonuclease activity of RNase L is currently unclear but 2–5A has been shown to induce dimerization of RNase L. To investigate the importance of dimerization of RNase L, we developed a 15 kDa dimerization-inducing protein domain that was fused to the N-terminus of RNase L. From these studies we provide direct evidence that dimerization of RNase L occurs at physiologically relevant protein concentrations and correlates with activation of ribonuclease activity. We also show that the binding of 2–5A to RNase L promotes dimerization of the ANK domain and suggest how this could transmit a signal to the rest of the protein to activate ribonuclease activity. Finally, we show that the dimerization-inducing domain can be used as a general fusion partner to aid in protein expression and purification.  相似文献   

15.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

16.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

17.
Human beta-defensin-2 (hBD2) is A small cationic peptide with A broad range of antimicrobial activity. An E. coli cell-free system was employed to express the hBD2 fusion protein by using the hBD2 gene with 14 rare codons. The results showed that the expression level of trxA-hBD2 fusion protein was 0.35 mg/ml, which is the same as that obtained with A synthetic codon-optimized gene. By using another fusion partner (GFP), similar high-level expression was also achieved in this cell-free system. This meant that human beta-defensin-2 gene could be directly used to express hBD2 fusion protein efficiently in an E. coli cell-free system without the optimization of codons. The expression level of hBD2 fused with thioredoxin could be further improved up to 2.0 mg/ml by adopting A continuous exchange cell-free system. A simple one-stage affinity purification procedure was also developed to recover this fusion protein efficiently.  相似文献   

18.
Tumor-targeted vectors with controllable expression of therapeutic genes and specific antitumor antibodies are promising tools for the reduction of malignant tumors. Here we describe a new plasmid for the eukaryotic expression of an anti-HER2/neu mini-antibody-barnase fusion protein (4D5 scFv-barnase-His(5)) with an NH(2)-terminal leader peptide. The 4D5 scFv-barnase-His(5) gene was placed downstream of the tetracycline responsive-element minimal promoter in the vector using the Tet-Off gene-expression system. The Bacillus amyloliquefaciens ribonuclease barnase is toxic for the host cells. To overcome this problem, barstar gene under its own minimal cytomegalovirus promoter was used in designed vector. Barstar inhibits the background level of barnase in the cells in the presence of tetracycline in culture medium. The HEK 293T cells were transfected with the designed vector, and the 4D5 scFv-barnase-His(5) fusion protein was identified by anti-barnase antibodies in cell culture medium and after purification from cell lysates using metal-affinity chromatography. The overexpression of the anti-HER2/neu mini-antibody-barnase fusion protein decreased the intensity of fluorescence of HEK 293T cells co-transfected with the generated plasmid and a plasmid containing the gene of enhanced green fluorescent protein (pEGFP-N1), in comparison with the intensity of fluorescence of HEK 293T cells transfected with pEGFP-N1, in the absence of tetracycline in the medium. The effect of the 4D5 scFv-barnase-His(5) on EGFP fluorescence indicates that the introduced barnase functions as a ribonuclease inside the cells. The anti-HER2/neu mini-antibody could be used to deliver barnase to HER2/neu-positive cells and provide its penetration into the target cells, as HER2/neu is a ligand-internalizing receptor. This expression vector has potential applications to both gene and antibody therapies of cancer.  相似文献   

19.
We established a strategy for protein production and purification via expression in Yarrowia lipolytica as Lip2p fusion protein. To evaluate the expression system a cysteine-rich miniprotein, an antibody fragment and an enzyme showing galactose oxidase activity were chosen. These proteins have varying disulfide bond content, size, and structural complexity. Endogenous lipase Lip2p was used as a fusion partner to direct the fused proteins to the extracellular medium. A linker sequence was introduced at the junction of Lip2p and the respective fused protein that contains a hexahistidine tag followed by a TEV protease cleavage site. This allows for a specific and simple purification via IMAC for capturing the secreted proteins from the supernatant followed by a second IMAC for removing all contaminants after proteolytic release of the protein of interest. Up to 174 mg/L fusion protein was obtained using shake flask cultivation. Functionality of each of the purified proteins was confirmed by individual assays. Expression of proteins of interest via Lip2p fusion not only provides a convenient expression and purification scheme but also enables for an online monitoring of accumulation of secreted fusion proteins in the medium by exploiting the intrinsic lipase activity of the fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号