首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用农业废弃物玉米芯酶解液替代葡萄糖作为碳源,棉籽粕替代酵母膏作为氮源发酵生产D-乳酸。结果表明:在初始还原糖质量浓度为100 g/L(葡萄糖88.5 g/L,木糖11.5 g/L)、棉籽粕3.5 g/L、每升发酵体积添加3 U的中性蛋白酶以及pH 6.5的情况下,采取补料发酵措施,菌株Sporolactobacillus sp.YBS1-5在90 h内产生了111.8 g/L的D-乳酸,糖酸转化率为87%,光学纯度达98%以上,生产强度达1.24 g/(L·h)。本文提供了一种利用农业废弃物发酵产D-乳酸的新途径。  相似文献   

2.
考察菊糖芽孢乳杆菌YBS1-5利用麸皮的水解液发酵生产D-乳酸的性能。首先研究了不同蛋白酶对麸皮中蛋白组分的水解效率,优选酸性蛋白酶并对其进行水解工艺的优化,最终其水解液中的含氮量为4.6 g/L,水解效率为85.8%。对酸性蛋白酶的水解液残渣进行稀酸预处理后,利用纤维素酶对其进行酶解。通过批次补料酶解,水解液中的还原糖质量浓度达141.2 g/L,其中葡萄糖质量浓度为138.1 g/L、木糖质量浓度为1.4 g/L。利用麸皮的蛋白酶水解液和纤维素酶水解液替代葡萄糖和酵母粉发酵制备D-乳酸。在96 h内,D-乳酸产量达99.5 g/L,生产速率达1.04 g/(L·h),转化率89.1%。  相似文献   

3.
氮源对L-苏氨酸发酵的影响   总被引:3,自引:0,他引:3  
以L-苏氨酸生产菌TRFC为供试菌株,研究了氮源对L-苏氨酸发酵的产量和糖酸转化率的影响。首先通过摇瓶实验确定发酵的最佳无机氮源和有机氮源分别为硫酸铵和酵母粉,进一步利用10L罐补料分批发酵确定硫酸铵和酵母粉的最佳用量,继续优化培养条件,采用发酵中后期流加硫酸铵和糖氨混合补料等措施,L-苏氨酸产量得到进一步的提高。在最优发酵条件下,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。  相似文献   

4.
乳杆菌Lactobacillus sp.lxp发酵高产L-乳酸研究   总被引:3,自引:0,他引:3  
筛选得到一株乳杆菌Laetobaeillus sp.,进行发酵生产高浓度L-乳酸的研究。考察了种龄、接种量、温度和不同pH调节剂对乳酸发酵的影响。结果表明:最佳种子培养时间为15h;最佳接种量为15%;最适培养温度为42℃;与氨水和氢氧化钠相比,碳酸钙更适于作为发酵过程的pH调节刺;以葡萄糖为碳源,添加豆粕水解液和玉米浆作为辅料,2L罐培养120h,L-乳酸质量浓度可达202 g/L,糖转化率91.3%,L-乳酸占发酵液中总酸含量98%以上。  相似文献   

5.
目前纤维素乙醇成本偏高的根本原因在于没有达到淀粉质乙醇发酵水平的"三高"(高浓度、高转化率和高效率)指标,提高水解糖液浓度和避免发酵抑制物来实现浓醪发酵,是解决问题的关键。文中以常压甘油自催化预处理麦草为底物,尝试采用不同发酵策略,探讨其浓醪发酵产纤维素乙醇的可行性。在优化培养条件(15%底物浓度,加酶量30 FPU/g干底物,温度37℃,接种量10%)下同步糖化发酵72 h,纤维素乙醇产量为31.2 g/L,转化率为73%,发酵效率0.43 g/(L·h);采用半同步(预酶解24 h)糖化发酵72 h,纤维素乙醇浓度达到33.7 g/L,转化率为79%,发酵效率为0.47 g/(L·h),其中(半)同步糖化发酵中90%以上纤维素已被糖化水解用于发酵;采用分批补料式半同步糖化发酵,补料到基质浓度相当于30%,发酵72 h时纤维素乙醇产量达到51.2 g/L,转化率为62%,发酵效率为0.71 g/(L·h)。在所有浓醪发酵中乙酸不足3 g/L,无糠醛和羟甲基糠醛等发酵抑制物。以上结果表明,常压甘油自催化预处理木质纤维素基质适用于纤维素乙醇发酵;分批补料式半同步糖化发酵策略可用来进行浓醪纤维素乙醇发酵;未来工作中提高基质纯度和强化酶解产糖是浓醪纤维素乙醇达到"三高"指标的关键。  相似文献   

6.
以嗜热乳杆菌(Lactobacillus Thermophilus ATCC8317)为出发菌,采用乙酸-乙酸钠平板为初筛方法,通过复合诱变乳酸产量提高到原来的3.1倍。培养基碳源为玉米粉糖化液,混合氮源为麦芽粉30g/L、蛋白胨5g/L。根据不同温度下细胞比生长速率及产物比生成速率的变化,确定了分阶段控制温度的策略:即在发酵前16h控制温度48℃、后44h控制温度54℃。L-乳酸产量达到135g/L,乳酸的对糖转化率为95%,平均产酸速率为2.25g/(L.h)。  相似文献   

7.
溶氧对L-苏氨酸发酵的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
探索溶氧对L-苏氨酸发酵过程的影响及其控制方法。通过摇瓶装液量试验、不同溶氧控制方式考察发酵过程中溶氧对L-苏氨酸合成的影响。采用补料分批发酵工艺发酵L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。可以得出溶氧对L-苏氨酸生物合成有重要影响,并建立了最佳溶氧控制条件。  相似文献   

8.
对谷氨酸棒杆菌(Corynebacteriuin glutamicum)HCJ46产L-谷氨酸的补料分批发酵条件进行研究.结果表明:最适初糖质量浓度和最佳残糖维持质量浓度分别为100和(10~20)g/L;对发酵控温方式进行研究,确定了最佳温度控制策略为0~8h维持32℃,8~16h维持34℃、16~32h维持36℃,同时发现相对溶氧控制在30%左右时产酸最高.在以上的优化条件下,L-谷氨酸产量从72g/L提高到95g/L,提高了31.9%.  相似文献   

9.
假丝酵母发酵玉米芯半纤维素水解液生产木糖醇   总被引:11,自引:0,他引:11  
采用一株驯化过的假丝酵母(Candida sp.)直接发酵经过简单脱毒处理的玉米芯半纤维素水解液生产木糖醇。确定了水解液的最适浓缩倍数在3.0~3.72的范围内。利用正交实验,确定了摇瓶分批发酵工艺条件的最适组合为:摇床转速180r/min,起始C/N为50,起始pH 5.5,接种量5% (体积比)。在此基础上,重点研究了在发酵罐中通气量对酵母发酵玉米芯水解液生产木糖醇的影响。结果表明采用先高后低的分段通气发酵在木糖醇得率方面明显优于恒定通气发酵;其中,在0~24h,3.75 L/min;24~108h,1.25 L/min的分段通气条件下(装液量为2.5L),木糖醇得率(木糖醇/木糖,g/g) 达到0.75 g/g。该结果将有助于建立一种高效的、大规模的利用玉米芯半纤维素水解液发酵生产木糖醇的工艺。  相似文献   

10.
为了强化厨余垃圾发酵L-乳酸的产量和光学纯度,研究了pH对米根霉AS3.819发酵厨余垃圾生产乳酸及其光学特性的影响。结果表明,在中温条件下(34℃),米根霉生长的最适pH为7,最适发酵条件为8。用米根霉发酵非灭菌的厨余垃圾生产乳酸,发酵液中还原糖浓度低,且呈先升高,后下降到最低的趋势。pH调节到近中性和偏碱性(pH6、7、8)的各组还原糖浓度高于偏酸性组(pH 5和对照组)。控制pH为8时,总乳酸产生速率达1 g/(L·h),L-乳酸是主要的异构体形式,L-乳酸在总乳酸中的比例在整个发酵时间段内都保持在0.75以上,L-乳酸浓度最高达到59.8 g/L,L-乳酸光学纯度可达到0.99。控制pH为8时,可以同时获得高的乳酸产量和光学纯度。  相似文献   

11.
Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity?>?99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L?h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L?h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L?h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.  相似文献   

12.
A novel white rot fungus strain Hohenbuehelia sp. ZW-16 was identified and first used for bioethanol production in this study. It was found that the strain could produce bioethanol with glucose, xylose and arabinose under limited oxygen condition. Then, corn straw hydrolysate and corncob hydrolysate (mainly composed of glucose, xylose, and arabinose) were used for bioethanol production; the former substrate could produce more bioethanol in the experiment. The optimal sugar concentration and nitrogen sources were selected (50 g/L corn straw hydrolysate and 10 g/L soybean meals, respectively) and the maximum yield of bioethanol reached 4.6 g/L after 8 days of fermentation.  相似文献   

13.
In this work, corncob acid hydrolysate and its simulated medium whose sugar composition was the same as the corncob acid hydrolysate were used as fermentation substrate for lipid production by oleaginous yeast Trichosporon dermatis. On the corncob acid hydrolysate, after 7 days of fermentation, the biomass, lipid content, lipid yield, and lipid coefficient of T. dermatis were 17.3 g/L, 40.2%, 7.0 g/L, and 16.5%, respectively. Interestingly, during the lipid fermentation on the corncob acid hydrolysate, glucose, xylose, arabinose, and even acetic acid could be well utilized as carbon sources by T. dermatis. Surprisingly, the lipid yield (7.0 g/L) of T. dermatis on the corncob acid hydrolysate was much higher than that (3.8 g/L) on the simulated medium, in spite of the fact that the lipid coefficient (17.4%) on the simulated medium was a little higher. This phenomenon further showed that lignocellulosic acid hydrolysate was a suitable substrate for lipid fermentation by T. dermatis. This work would help the comprehensive utilization of lignocellulosic biomass for lipid production.  相似文献   

14.
Succinic acid is one of the most important platform chemicals since it has great potential in industrial applications. In this study, corncob hydrolysate was used for succinic acid production. After diluted acid treatment, xylose was released from hemicellulose as the predominant monosaccharide in the hydrolysate, whereas glucose was released very little and most was retained as cellulose in the raw material. Without any detoxification, corncob hydrolysate was used directly as the carbon source in the fermentation. Actinobacillus succinogenes could utilize the sugars in the hydrolysate to produce succinic acid efficiently. Through medium optimization, yeast extract was selected as the nitrogen source and MgCO3 was used to control pH. A total of 23.64 g/l of succinic acid was produced with a yield of 0.58 g/g based on consumed sugar, indicating that the waste corncob residue can be used to produce value-added chemicals practically.  相似文献   

15.
利用天然纤维废弃物发酵生产L-乳酸的研究   总被引:2,自引:0,他引:2  
为了降低L-乳酸的生产成本,更好的实现生物质秸秆的资源化,利用天然纤维素依次接种经离子注入诱变处理的木聚糖酶高产菌黑曲霉P602和米根霉RL6041高产菌进行固、液体二次发酵的方法,将其转化成用于工业生产的L-乳酸。结果表明:本实验条件下,未经过任何化学预处理的秸秆等物质接种黑曲霉P602进行固体发酵,产生的木聚糖酶活力为6 320 IU/g干(培养)基,纤维素酶活力为29 IU/g干基;加入100 mL水浸提后,产生的还原糖浓度为14.07 g/L,纤维物质糖化率为79.45%。取滤液接入米根霉RL6041进行液体发酵后,生成乳酸的量为7 g/L,糖酸转化率为47.6%,以(NH4)2SO4作为氮源时,最佳氮源浓度为3 g/L。  相似文献   

16.
Acetone–butanol–ethanol (ABE) production from corncob was achieved using an integrated process combining wet disk milling (WDM) pretreatment with enzymatic hydrolysis and fermentation by Clostridium acetobutylicum SE-1. Sugar yields of 71.3 % for glucose and 39.1 % for xylose from pretreated corncob were observed after enzymatic hydrolysis. The relationship between sugar yields and particle size of the pretreated corncob was investigated, suggesting a smaller particle size benefits enzymatic hydrolysis with the WDM pretreatment approach. Analysis of the correlation between parameters representing particle size and efficiency of enzymatic hydrolysis predicted that frequency 90 % is the best parameter representing particle size for the indication of the readiness of the material for enzymatic hydrolysis. ABE production from corncob was carried out with both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using C. acetobutylicum SE-1. Interestingly, when considering the time for fermentation as the time for ABE production, a comparable rate of sugar consumption and ABE production in the SHF process (0.55 g/l·h sugar consumption and 0.20 g/l·h ABE production) could be observed when glucose (0.50 g/l·h sugar consumption and 0.17 g/l·h ABE production) or a mixture of glucose and xylose (0.68 g/l·h sugar consumption and 0.22 g/l·h ABE production) mimicking the corncob hydrolysate was used as the substrate for fermentation. This result suggested that the WDM is a suitable pretreatment method for ABE production from corncob owing to the mild conditions. A higher ABE production rate could be observed with the SSF process (0.15 g/l·h) comparing with SHF process (0.12 g/l·h) when combining the time for saccharification and fermentation and consider it as the time for ABE production. This is possibly a result of low sustained sugar level during fermentation. These investigations lead to the suggestion that this new WDM pretreatment method has the potentials to be exploited for efficient ABE production from corncob.  相似文献   

17.
Elephant grass (Pennisetum purpureum) dilute acid hydrolysate contains 34.6?g/L total sugars. The potential of lipid production by oleaginous yeast Trichosporon cutaneum grown on elephant grass acid hydrolysate was investigated for the first time. During the fermentation process on the elephant grass acid hydrolysate, glucose, xylose, and arabinose could be well utilized as carbon sources by T. cutaneum. Interestingly, xylose was almost no use before glucose was consumed completely. This illustrated that simultaneous saccharification of xylose and glucose by T. cutaneum did not occur on elephant grass acid hydrolysate. The highest biomass, lipid content, lipid yield, and lipid coefficient of T. cutaneum were measured after the sixth day of fermentation and were 22.76?g/L, 24.0%, 5.46?g/L, and 16.1%, respectively. Therefore, elephant grass is a promising raw material for microbial oil production by T. cutaneum.  相似文献   

18.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

19.
20.
A strain designated M866, producing kojic acid with a high yield, was obtained by combining induced mutation using ion beam implantation and ethyl methane sulfonate treatment of a wild type strain of Aspergillus oryzae B008. The amount of kojic acid produced by the strain M866 in a shaking flask was 40.2 g/L from 100 g/L of glucose, which was 1.7 times higher than that produced by wild strain (23.58 g/L). When the mixture of glucose and xylose was used as carbon source, the resulting kojic acid production was raised with the increasing of glucose ratios in the mixture. With concentrations of glucose at 75 g/L and xylose at 25 g/L mixed in the medium, the production of kojic acid reached 90.8 %, which was slightly lower than with glucose as the sole source of carbon. In addition, the kojic acid fermentation of the concentrated hydrolysate from corn stalk was also investigated in this study, the maximum concentration of kojic acid accumulated at the end of the fermentation was 33.1 g/L and this represents the yield based on reducing sugar consumed and the overall productivity of 0.36 g/g and 0.17 g/L/h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号