首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
米根霉利用纯糖和不同预处理玉米秸秆酶解糖生产L-乳酸   总被引:1,自引:0,他引:1  
通过单因素实验设计,优化米根霉摇瓶发酵产L-乳酸。在此基础上,以蒸气爆破和碱处理玉米秸秆酶解液为混合C源,与纯糖对比,研究不同预处理玉米秸秆混合C源对米根霉发酵产L-乳酸的影响。结果显示:在初始葡萄糖质量浓度100g/L、(NH4)2SO4质量浓度2g/L、接种量6%(体积分数)、转速170r/min、发酵12h后添加30g/LCaCO3的条件下,米根霉发酵产L-乳酸质量浓度为69.15g/L。米根霉发酵不同预处理玉米秸秆酶解混合C源,木糖的存在影响了米根霉的C代谢网络,降低L乳酸的产量。  相似文献   

2.
发酵初期在米根霉菌发酵培养基中添加L-乳酸可以调控发酵产物乳酸的光学纯度。随着L-乳酸添加量的增加,所产L-乳酸的光学纯度随之增加,当L-乳酸的添加量≥1.5g/L时,D-乳酸不再产生。同时,L-乳酸的产量、生物量、糖转化率也随之降低。该调控方法对乳酸菌调控产L-乳酸光学纯度影响不大,对大肠杆菌发酵调控产D-乳酸光学纯度没有效果。  相似文献   

3.
无载体固定化米根霉重复间歇发酵生产L-乳酸   总被引:1,自引:1,他引:0  
通过研究影响米根霉菌丝体形态的培养基因素,初步构建了无载体固定化米根霉重复间歇发酵生产L-乳酸的工艺条件.研究结果表明,首批次发酵培养基采用120 g/L葡萄糖,3 g/L硝酸铵,K 和Na 浓度比为1:1,发酵72 h后,米根霉菌体形态为均匀的茵丝体小球,直径为1.0 mm~2.0 mm,此时L-乳酸产量可达100.8 g/L,葡萄糖转化率为84%.在此基础上,利用米根霉菌丝体小球重复间歇发酵16批次,每批次发酵24h,此时葡萄糖转化率均高于75%,L-乳酸产量保持在60.0 g/L以上,米根霉菌丝体小球形态保持稳定.  相似文献   

4.
利用木霉与根霉两步发酵秸秆制备L-乳酸研究   总被引:1,自引:0,他引:1  
以秸秆为原料进行生物转化大量制备有机酸意义重大.在秸秆汽爆法预处理的基础上,以绿色木霉为菌种转化制备秸秆糖,对降解单糖接种米根霉进行二次发酵制备L-乳酸.试验结果表明,第一步绿色木霉固态培养制备纤维素酶时,控温30℃、通气0.12L/(L.min)、发酵40h后制备干曲,后按10g干曲/L汽爆液的配比进行55℃酶解36h,五、六碳糖累积浓度达到86g/L.第二步米根霉发酵时,控制温度32℃、通气0.4L/(L·min)、转速450r/min,发酵48h,最终产L-乳酸累积浓度为81.6g/L.秸秆制备L-乳酸的两步发酵法发酵工艺具有推广价值.  相似文献   

5.
对玉米芯稀硫酸水解条件及糖化液发酵L-乳酸进行了初步研究。结果表明,玉米芯木聚糖最适水解条件为2%H2SO_4、120℃、30 min、固液比1:10,糖化液还原糖含量可达40.8 g/L,主要成分为木塘。细菌A-19可以利用水解液中的葡萄糖和木糖产酸,最适发酵条件为45℃、pH 6.5,从45℃~51℃、pH 5.5~pH 6.5产量均较高。用未浓缩的水解液发酵24 h,L-乳酸产量为30.6g/L,残糖为1.6 g/L,糖酸转化率为82.6%;用浓缩1倍的水解液发酵48 h,L-乳酸产量为41.4 g/L,残糖4.1g/L,糖酸转化率为68.2%,在发酵48 h后继续补料发酵至72 h(补料液为浓缩3倍的水解液),L-乳酸产量为50.9 g/L,残糖6.3 g/L,糖酸转化率为71.8%。该研究为利用木质纤维素生产L-乳酸奠定了一定基础。  相似文献   

6.
利用天然纤维废弃物发酵生产L-乳酸的研究   总被引:2,自引:0,他引:2  
为了降低L-乳酸的生产成本,更好的实现生物质秸秆的资源化,利用天然纤维素依次接种经离子注入诱变处理的木聚糖酶高产菌黑曲霉P602和米根霉RL6041高产菌进行固、液体二次发酵的方法,将其转化成用于工业生产的L-乳酸。结果表明:本实验条件下,未经过任何化学预处理的秸秆等物质接种黑曲霉P602进行固体发酵,产生的木聚糖酶活力为6 320 IU/g干(培养)基,纤维素酶活力为29 IU/g干基;加入100 mL水浸提后,产生的还原糖浓度为14.07 g/L,纤维物质糖化率为79.45%。取滤液接入米根霉RL6041进行液体发酵后,生成乳酸的量为7 g/L,糖酸转化率为47.6%,以(NH4)2SO4作为氮源时,最佳氮源浓度为3 g/L。  相似文献   

7.
米根霉乙醇脱氢酶(ADH)突变菌株的诱变选育   总被引:4,自引:0,他引:4  
米根霉发酵生产L-乳酸过程中,由于丙酮酸在丙酮酸脱羧酶、乙醇脱氢酶(ADH)催化下生成乙醇,使得丙酮酸向乳酸转化的流量减少。采用亚硝基胍(NTG)诱变米根霉AS3.3462孢子液,诱变剂量为0.15 mg/ mL时,致死率为70%~80%。在含丙烯醇的YPD筛选培养基上筛选获得两株ADH活力降低的突变株mut-1和mut-2,检测突变株mut-1和mut-2的最大ADH活力分别为35.67和43.09U/mL,是原始菌株的41.63%和50.29%。发酵72h后,原始菌株的乙醇与乳酸浓度分别为28.9g/L和40.31g/L,而mut-1和mut-2突变株的乙醇产量分别为4.87g/L和6.56g/L,乳酸产量为54.45g/L和44.07g/L。在相同的发酵条件下,米根霉ADH突变株mut-1和mut-2对还原糖的利用速率高于出发菌株,其生物量积累亦高于出发菌株。  相似文献   

8.
为获得理想的L-乳酸产生菌,选择适合根霉属微生物生长的土样,利用溴甲酚绿平板结合摇瓶复筛的方法得到了一株有一定L-乳酸积累能力的米根霉Rhizopus oryzae CS323。摇瓶发酵试验显示,在未优化发酵条件的情况下发酵48h,米根霉CS323L-乳酸积累量达到50.1g/L,是一株有良好改造潜力的L-乳酸产生菌,适合作为进一步诱变育种的出发菌株。  相似文献   

9.
[目的]为了了解无机盐与米根霉L-乳酸代谢之间的关系,提高米根霉菌株RLC41-6发酵产L-乳酸的产率与质量,研究了ZnSO4浓度与菌株乳酸代谢和细胞内乳酸脱氢酶活性的关系.[方法]在米根霉培养基中加入不同浓度ZnSO4,经过36℃培养36 h后,应用HPLC-反相色谱法测定产物中的L-乳酸含量,并利用活性PAGE分析法测定细胞内乳酸脱氢酶的活性和组成.[结果]实验结果显示,ZnSO4对除LDH1之外的其它几条同工酶都有促进作用,尤其对LDH4,LDH5作用明显,当ZnSO4浓度大于0.02%时,LDH4,LDH5达到最大水平,同时高浓度的锌离子在体外抑制了LDH的活性.当ZnSO4浓度为0.02%时LDH酶活达到最大200 U/mL,HPLC图谱表明,此时发酵产物的只有L-乳酸,且产量达到最大137g/L,乳酸转化率为91%.[结论]Zn+会影响米根霉的乳酸代谢过程,并导致发酵过程中产物类型的变化,合适浓度的ZnSO4在米根霉代谢产乳酸的过程中,提高了乳酸脱氢酶LDH的表达,抑制丙酮酸进入苹果酸和富马酸途径,从而有利于提高葡萄糖到乳酸的代谢.  相似文献   

10.
通过氮离子注入获得米根霉突变株RQ4012,其利用木糖的能力比出发菌株提高了1.6倍;通过多次传代,证明其具有良好的遗传稳定性。试验测定菌株RQ4012发酵木糖生产L-乳酸的最佳发酵条件:木糖10%,生理盐水浸泡孢子9 h,(NH4)2SO43 g/L,接种量4%,CaCO3添加量6%,装液量20%,温度37℃,转速200 r/min,在此条件下,乳酸产量达到79.51 g/L。对混合糖的发酵进行了探索,结果表明该菌能高效利用混合糖生产L-乳酸,在利用植物纤维素水解液生产L-乳酸上有良好的应用前景。  相似文献   

11.
以膜反应器固定化米根霉发酵产富马酸为研究对象,以Na2CO3为中和剂,考察固定化米根霉在5L搅拌式发酵罐中的发酵特征,采用智能可视化软件(IVOS)优化发酵工艺条件。结果表明,在80g/L初始糖浓及最优工艺下,富马酸产量、生产速率及转化率分别为21.1g/L、0.25g/(L·h)和28%;采用40g/L初始糖浓及连续批次发酵工艺时,富马酸产量、生产速率及转化率最高分别为10.8 g/L、0.36g/(L·h)和27%。搅拌式反应器中,固定化米根霉的膜反应器比表面积有限,以及菌膜的空间阻隔效应对传质传氧的限制作用,显著影响了富马酸的生产强度和转化率。因此,亟需发掘新的固定化方法及反应器形式,达到既解决米根霉形态控制问题,又有助于生产性状提升的目标。  相似文献   

12.
耐氨米根霉发酵生产L-乳酸的研究   总被引:2,自引:0,他引:2  
传统的L-乳酸发酵法生产以CaCO3为酸中和剂,在乳酸后提取中产生的大量石膏废渣不仅在过滤时造成较大的乳酸损失,而且由于废渣不易处理,对L-乳酸万吨级规模的生产将形成巨大的环保压力和废渣处理成本。为此,为了降低L-乳酸生产成本,该文采用氨水为酸中和剂,用筛选得到的一株米根霉RhizopusoryzaeJS-N02-02进行以氨水为中和剂的L-乳酸摇瓶、15L自动发酵罐的发酵试验。以玉米粉双酶水解糖为碳源,接种孢子浓度1×105个ml,以0.01%(NH4)2SO4为氮源,30℃,15L自动发酵罐连续5批发酵,平均总糖浓度为136.8gL,平均产酸达100.6gL,L-乳酸纯度达95.3%,糖酸转化率达71.6%。  相似文献   

13.
利用五碳糖产高纯度L-乳酸的大肠杆菌基因工程菌的构建   总被引:1,自引:0,他引:1  
[目的]本研究以已敲除多个产杂酸酶基因的大肠杆菌(Escherichia coli)乙醇工程菌SZ470(△frdBC △ldhA △ackA △focA-pflB △pdhR::pflBp6-pflBrbs-aceEF-lpd)为起始菌株,进一步敲除其乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,同时插入带有自身启动子的乳酸片球菌(Pediococcus acidilactici)的L-乳酸脱氢酶(L-lactate dehydrogenase,LLDH)基因,构建可利用五碳糖同型发酵L-乳酸重组大肠杆菌.[方法]利用λ噬菌体Red重组系统构建乙醇脱氢酶基因(adhE)缺失菌株Escherichia coli JH01,并克隆P.acidilactici的ldhL基因,利用染色体插入技术将其整合到JH01基因组,构建产L-乳酸大肠杆菌基因工程菌Escherichia coli JH12,利用无氧发酵15 L发酵罐测定重组菌株L-乳酸产量.[结果]工程菌JH12在15 L发酵罐中以6%的葡萄糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为1.46 g/(L·h),乳酸生产强度为1.14 g/(L·h),乳酸的产量达到41.13 g/L.发酵产物中未检测到琥珀酸、甲酸的生成,仅有少量乙酸生成,L-乳酸纯度达95.69%(L-乳酸在总发酵产物的比率).工程菌JH12以6%的木糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为0.88 g/(L·h),乳酸生产强度为0.60 g/(L·h),乳酸的产量达到34.73 g/L.发酵产物中杂酸少,乳酸的纯度高达98%.[结论]本研究通过基因敲除、染色体插入及无氧进化筛选获得一株产L-乳酸的大肠杆菌工程菌JH12,该菌株不需利用外源质粒,稳定性好,可利用五碳糖进行发酵,发酵产物中杂酸少,L-乳酸的纯度高.本研究为L-乳酸大肠杆菌工程菌的构建提供一定的技术支持,同时也为大肠杆菌L-乳酸的工业化生产提供了参考依据.  相似文献   

14.
乳杆菌Lactobacillus sp.lxp发酵高产L-乳酸研究   总被引:3,自引:0,他引:3  
筛选得到一株乳杆菌Laetobaeillus sp.,进行发酵生产高浓度L-乳酸的研究。考察了种龄、接种量、温度和不同pH调节剂对乳酸发酵的影响。结果表明:最佳种子培养时间为15h;最佳接种量为15%;最适培养温度为42℃;与氨水和氢氧化钠相比,碳酸钙更适于作为发酵过程的pH调节刺;以葡萄糖为碳源,添加豆粕水解液和玉米浆作为辅料,2L罐培养120h,L-乳酸质量浓度可达202 g/L,糖转化率91.3%,L-乳酸占发酵液中总酸含量98%以上。  相似文献   

15.
L-乳酸因对人体安全无毒,应用领域广泛。为提高L-乳酸的产量、得率,降低其生产成本,选用制备L-乳酸的理想菌种米根霉,以低聚木糖生产废渣为底物,探究基于木质纤维原料生物转化L-乳酸的最佳工艺路线。采用纤维床生物反应器固定化米根霉进行同步糖化发酵,有利于解决低聚木糖工业加工中的大量废渣再利用问题,实现米根霉利用木质纤维原料低成本、高得率制备L-乳酸。在固定化米根霉发酵的基础上,从原料低聚木糖生产废渣到成品L-乳酸全工艺过程,利用Super Pro Designer进行评估核算,探讨其工业化可行性和经济效益,年产5.0万t L-乳酸的项目建设投资回收期为3.24年。  相似文献   

16.
以马铃薯淀粉为原料,采用同步糖化发酵方法制备乳酸。通过Plackett-Burman实验设计对影响乳酸产量的7个因子进行筛选,结果表明淀粉质量浓度、糖化酶用量和发酵温度3个因素对乳酸产量影响显著。利用最陡爬坡试验逼近最大响应区,采用中心复合实验设计及响应面分析法进行回归分析,建立影响乳酸产量的二次模型。模型求解得出最优淀粉质量浓度为271.89g/L,糖化酶用量为265.09U/g,发酵温度为39.05℃,最大理论乳酸产量为196.99g/L。3批验证实验结果平均值与预测值接近,表明该模型与实际情况拟合良好,实际最大乳酸产量为193.6g/L,较优化前提高了13.9%,L-乳酸的平均纯度达到95.2%。  相似文献   

17.
以碱预处理玉米芯渣为原料,采用单因素优化方法优化米根霉同步糖化发酵产富马酸。在此基础上,研究米根霉利用碱预处理玉米芯渣的同步糖化发酵,并与纯糖发酵进行对比。结果表明:在50 g/L底物、(NH4)2SO4质量浓度0.71 g/L、纤维素酶用量20 FPIU(以1 g纤维素计)、Ca CO3加入量30 g/L、接种量10%(体积分数)和装液量50 m L的条件下,米根霉同步糖化发酵过程产富马酸13.78 g/L,而纯糖发酵富马酸生成量仅6.21 g/L。  相似文献   

18.
利用农业废弃物玉米芯酶解液替代葡萄糖作为碳源,棉籽粕替代酵母膏作为氮源发酵生产D-乳酸。结果表明:在初始还原糖质量浓度为100 g/L(葡萄糖88.5 g/L,木糖11.5 g/L)、棉籽粕3.5 g/L、每升发酵体积添加3 U的中性蛋白酶以及pH 6.5的情况下,采取补料发酵措施,菌株Sporolactobacillus sp.YBS1-5在90 h内产生了111.8 g/L的D-乳酸,糖酸转化率为87%,光学纯度达98%以上,生产强度达1.24 g/(L·h)。本文提供了一种利用农业废弃物发酵产D-乳酸的新途径。  相似文献   

19.
酶水解菊芋糖浆发酵生产琥珀酸的初步研究   总被引:6,自引:1,他引:5  
用产菊粉酶的一株黑曲霉菌株进行产酶发酵条件和水解条件研究,在30℃,pH 6.0,摇床转速200 r/min,发酵时间为3 d的最适产酶条件下,酶活可以达到45.9 U/mL.以总糖含量为85.2 g/L的菊芋粉为初始底物,最适酶水解条件为温度50℃,加黑曲霉培养液的量为10%(v/v),水解12 h后,水解率达到99.6%.用此酶解液在5 L搅拌发酵罐中进行琥珀酸发酵,初始还原糖浓度53.5 g/L,36 h发酵产琥珀酸43.8 g/L,琥珀酸产率0.83 g/g,糖利用率99.0%,琥珀酸生产强度1.22 g/(L·h).  相似文献   

20.
三相流化床中固定化米根霉萃取发酵生产L-乳酸   总被引:1,自引:0,他引:1  
以TRPO/磺化煤油为萃取剂,在2L三相流床反应器中进行了固定化米根霉原位萃取和异位萃取发酵生产L-乳酸的实验,结果表明,发酵液中的pH值能被控制在3.5左右.产酸速率高达每小时.每1L固定化颗粒产生11gL-乳酸。提出了一个数学模型用以描述萃取发酵中L-乳酸的积累及在各相的分配情况。模型计算曲线与实验值符合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号