首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以‘云薯505’马铃薯(Solanum tuberosum ‘Yunshu 505’)为材料,测定马铃薯块茎发育初期四个阶段茉莉酸含量,并以叶面喷施方式,研究茉莉酸甲酯对马铃薯生长和块茎产量的影响。结果表明,马铃薯块茎膨大过程中,茉莉酸的积累水平不断升高。在微型薯生产中,使用100 μmol·L-1茉莉酸甲酯在结薯期以不同频率喷施叶面,测量并统计植株、块茎性状及产量变化。结果表明,与对照(CK)相比,1次·d-1处理茎粗增加36.1%,2次·d-1处理的叶绿素含量降低20.1%。此外,植株的叶色、茎色、花色、株型等生长性状及块茎大小整齐度、薯形、皮色、肉色、薯皮类型、芽眼深浅、裂薯率、大薯空心率等块茎性状在各组间没有显著差异。2次·d-1、1次·d-1、1次·2d-1、CK四种处理的植株存活率分别为45.57%、100.00%、100.00%、87.29%;前三种喷施频率处理折合产量较CK分别增加-15.61%、8.77%、12.11%。综合分析,马铃薯在块茎形成初期茉莉酸积累水平不断升高,以1次·2d-1频率叶面喷施100 μmol·L-1茉莉酸甲酯,马铃薯微型薯的产量增加最大且不影响生长。  相似文献   

2.
为研究抗坏血酸(AsA)处理对马铃薯试管薯形成和结薯相关基因表达的影响及敲除结薯关键基因Solanum tuberosum self-prunning 6A(StSP6A)对AsA诱导马铃薯结薯的效应,利用不同浓度(0、1、5、10、20和50 mmol/L)外源AsA处理2个二倍体马铃薯CIP-149(Solanum phureja)、CIP-178(S.ajanhuiri)和四倍体C-88(S.tuberosum)。结果表明,1~5 mmol/L外源AsA处理可显著诱导马铃薯块茎的形成。对10个块茎形成相关基因的表达分析结果表明,外源添加1 mmol/L AsA可显著影响块茎形成相关基因的表达,与对照相比,总体上呈正调控基因表达增强或负调控因子表达被抑制的趋势,特别是StSP6A在AsA处理过程中的块茎形成早期表达量极显著上调,敲除StSP6A可消除外源AsA对马铃薯块茎形成的诱导作用。这些结果表明,AsA诱导马铃薯块茎形成是通过调控与块茎形成相关的基因表达来实现的,而StSP6A在AsA诱导马铃薯块茎形成中起关键作用。  相似文献   

3.
硒肥对马铃薯硒素吸收、转化及产量、品质的影响   总被引:12,自引:0,他引:12  
通过设对照(CK)、保水缓释硒肥(W)、生物炭基硒肥(C)、硒酸钠硒肥(S)4个处理来研究不同硒肥对马铃薯(品种为早大白)硒素吸收、转化及产量、品质的影响。结果表明:各处理马铃薯各器官硒含量在生育期内总体上呈下降趋势,马铃薯各器官的硒含量呈现:苗期根茎叶片;成熟期叶片茎块茎的特点;随着硒肥用量的增加,W处理下的总硒、无机硒、有机硒含量呈增大趋势,产量、有机硒转化率、粗蛋白、还原糖和Vc呈先升高后降低的趋势;C处理和S处理下,马铃薯以上各指标均呈先升高后降低的趋势,在低施硒量(0.126 kg/hm2)时,3种硒肥显著降低了马铃薯块茎淀粉含量,之后随着施硒量的增加淀粉含量变化不显著;与对照相比,3种硒肥在适宜施硒量(0.379 kg/hm2)时,马铃薯产量提高了4.87%—5.44%,粗蛋白含量增加了12.18%—20.03%,还原糖提高了6.45%—12.90%,Vc含量提高-0.54%—3.11%,有机硒转化率增加13.00%—15.10%,淀粉含量增加了-0.73%—1.12%;综合考虑3种硒肥对马铃薯含硒量、产量、品质的影响,W处理最佳,C处理次之,S处理最差。  相似文献   

4.
外源激素对脱毒马铃薯扦插苗生长及生理效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以‘早大白’马铃薯脱毒苗为试验材料,通过人工温室苗床栽培探讨外源激素萘乙酸(NAA)、吲哚丁酸(IBA)和硼酸生根处理对扦插脱毒苗生长和生理特征的影响,为马铃薯微型薯的实际生产提供理论依据。结果显示:(1)外源激素生根处理较对照扦插苗根系长势好,根活力、根系可溶性蛋白含量增加。(2)外源激素生根处理较对照脱毒扦插苗光合速率提高、叶绿素含量增加,光合物质的形成与积累增多。(3)外源激素生根处理较对照叶片SOD、POD、CAT活性和游离氨基酸含量均表现出不同程度的上升,MDA含量下降,衰老减缓。(4)外源激素生根处理有利于小区产量和单株结薯数的增加。研究表明,不同外源激素生根处理可改善脱毒马铃薯扦插苗农艺性状和生理指标,并以NAA 100mg/L+IBA 50mg/L+硼酸17.5mg/L配方处理植株的长势最好,叶绿素含量、保护酶活性及游离氨基酸含量最高,净光合速率大、小薯膨大速度快且单株结薯数量及产量增加显著,更利于发挥脱毒薯的增产优势。  相似文献   

5.
马铃薯是全球第四大粮食作物,粮菜兼用,有丰富的营养价值。马铃薯块茎是马铃薯最具经济价值的部分。马铃薯块茎形成的过程受多种调控途径的调控,其中最重要的是蔗糖途径和赤霉素(GA)途径。本实验设计蔗糖浓度,GA浓度和培养基类型3个因素的正交试验,通过对马铃薯的结薯时间,结薯数,马铃薯均重和大薯率的统计发现高浓度的蔗糖能够使马铃薯结薯提前,液体培养基能够增加马铃薯的薯重和大薯率。添加8%蔗糖和0.1 mg/L GA的液体MS培养基能够使马铃薯提前结薯并且得到的马铃薯数量多,薯重大。  相似文献   

6.
【目的】探讨施钾条件下,蚜虫取食诱导的水杨酸在促进马铃薯Solanum tuberosum抗虫性方面的作用机制,为提高作物抗虫性提供科学依据。【方法】施钾(外施硫酸钾6 g/株)、虫害(桃蚜Myzus persicae取食, 5头成虫/株)、施钾+虫害及外源水杨酸(浓度分别为15, 30和45 μmol/L,喷施量20 mL/株)条件下,测定马铃薯叶片中水杨酸和脯氨酸含量、苯丙氨酸解氨酶(PAL)活性及抗氧化酶[过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)]活性。【结果】结果表明:与未处理对照相比,施钾、虫害、施钾+虫害处理后马铃薯叶片中内源水杨酸含量分别增加了1.1,1.3和1.5倍,PAL活性分别增加了23.3%, 22.3%和35.0%。在施钾、虫害、施钾+虫害3个处理中,施钾+虫害处理的马铃薯叶片中内源水杨酸含量和PAL活性均为最高。用不同浓度外源水杨酸喷施马铃薯叶片,不论是否施钾,用浓度为15 μmol/L水杨酸喷施马铃薯植株后,其SOD活性均显著高于对照组。施钾后除喷施30 μmol/L水杨酸溶液外,喷施15和45 μmol/L水杨酸溶液的马铃薯植株POD活性均显著高于各自对照,活性分别为各自对照的1.7和1.8倍。施钾组中CAT活性在15和30 μmol/L水杨酸喷施后均显著高于对照,分别为对照的1.3和1.5倍。喷施15 μmol/L水杨酸后,马铃薯叶片中脯氨酸含量(1.2 OD/g pro)较对照(0.4 OD/g pro)显著升高。【结论】虫害、施钾+虫害处理均能提高马铃薯叶片中水杨酸含量和PAL活性。15 μmol/L外源水杨酸显著提高了施钾组中POD, SOD和CAT活性及脯氨酸含量,说明15 μmol/L是所用最适水杨酸浓度,该浓度下水杨酸与施钾具有正交互作用。结果提示虫害与施钾共同作用能增强水杨酸信号途径,从而提高植物的抗虫性。  相似文献   

7.
采用不同浓度(0、20、40、60、80、100mg/L)腐植酸(HA)叶面喷施处理,通过盆栽实验分析了HA对高温胁迫下掌叶半夏幼苗生长生理指标及次生代谢的调控效应。结果显示:(1)各浓度HA处理均可不同程度地促进高温胁迫下掌叶半夏的生长发育,且以80mg/L HA处理下其块茎鲜重(6.990 5g/株)、叶柄鲜重(1.755 4g/株)及总叶绿素含量(19.961 3mg/g)最高,较对照分别显著提高21.25%、118.5%和37.19%。(2)当HA处理浓度为60mg/L时,掌叶半夏幼苗叶片中可溶性糖、可溶性蛋白含量均最高,分别比对照显著提高66.67%、40.91%;叶片抗氧化酶(SOD、POD)活性达到最大值,MDA含量降至最低,SOD、POD活性分别比对照显著提高818.98%和48.2%,MDA含量较对照显著降低62.08%;且块茎中鸟苷含量较高,比对照显著提高52.94%。(3)当叶面喷施80mg/L HA时,掌叶半夏幼苗叶片中游离脯氨酸含量和块茎中总生物碱、总有机酸、腺苷的含量均最高,分别比对照显著提高169.63%、27.19%、42.32%、96.23%。研究表明,适宜浓度HA处理可显著提高高温胁迫下掌叶半夏幼苗叶片内抗氧化酶(SOD、POD)的活性及渗透调节物质(可溶性糖、可溶性蛋白、游离脯氨酸)含量,以及块茎中次生代谢产物(总生物碱、总有机酸、鸟苷和腺苷)的含量,有效减轻夏季高温对掌叶半夏幼苗叶片的伤害、延缓衰老、提高其幼苗抗热性,促进生长、延长生长期。  相似文献   

8.
以马铃薯品种"夏波蒂"为材料,设保水剂穴施、涂层、拌种处理和对照4个处理,分析了保水剂不同施用方式对马铃薯生长及产量的影响。结果表明:施用保水剂有利于提高马铃薯的出苗率和成苗率,以穴施处理的出苗率和成苗率最高,较对照分别提高22%和4%;株高和株幅随生育时期的推进逐渐增大,进入淀粉积累期时,穴施处理的株高显著高于其他处理,比对照提高44%;穴施处理各时期的叶绿素含量最高,维持了植株高水平的光合速率;马铃薯叶片中脯氨酸含量随生育时期的推进逐渐增加,进入淀粉积累期时,对照的脯氨酸含量明显低于拌种处理,而显著高于穴施和涂层处理;各处理叶片中可溶性糖含量先增加后降低,并逐渐向薯块中转移;植株鲜质量、干质量均随生育时期的推进逐渐增加,块茎形成期后增加较快,进入淀粉积累期时,施用保水剂处理的生物量均显著高于对照;穴施处理产量最高,较对照提高57%,其次是涂层处理;施用保水剂处理均利于旱作马铃薯增产。  相似文献   

9.
甘肃省中部沿黄灌区是全国重要的加工型马铃薯生产基地,然而因集约化生产带来的连作障碍问题已经严重影响到当地马铃薯种植业的健康发展。结合田间试验和相关的室内分析,从马铃薯块茎产量和品质、植株生理特征和土壤真菌群落结构等角度,初步评估土壤灭菌和生物有机肥联用(Ammonia Disinfection plus Bio-organic Fertilizer Regulation,ABR)对马铃薯连作障碍的防控效果。同对照相比,ABR处理的块茎产量和商品薯率分别显著增加约71.1%—152.1%和39.2%—53.3%,但块茎化学品质变化不大。ABR处理叶绿素含量和根系活力较CK均显著增加,而叶片和根系丙二醛含量显著下降。PCR-DGGE分析发现,ABR处理显著影响了马铃薯连作土壤的真菌群落结构,表现为真菌群落的多样性指数较CK相比显著下降。ABR处理还有效抑制了土传病害的滋生,植株发病率和收获后的病薯率较CK分别显著下降约67.2%—82.2%和69.1%—70.5%。采用Real-time PCR评估连作土壤中3种优势致病真菌的数量变化,显示ABR处理下立枯丝核菌、茄病镰刀菌和接骨木镰刀菌的数量在生育期内较CK均有不同程度的下降。综合来看,土壤灭菌和生物有机肥联用技术在防控甘肃省中部沿黄灌区马铃薯连作障碍上具有较大的应用潜力,而对土传病害的抑制和微生物群落结构的改善是其主要的作用机理。  相似文献   

10.
硫硒配施对茎瘤芥生长和营养效应的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以茎瘤芥品种‘涪杂1号’为材料,通过盆栽实验探讨不同浓度的硫(S)、硒(Se)配施处理对茎瘤芥干物质积累、矿质元素吸收及膨大茎营养品质的影响,为生产中合理施用硫、硒肥提供理论依据.结果表明:与对照(S0Se0,未施硫硒肥)相比,增施硫、硒肥处理均能显著提高茎瘤芥的根、膨大茎、叶片和单株干物质产量,并以S50Se1[S/Se=50(mg/kg)/1(mg/kg)]和S100Se1的处理效果较好,其单株干物质产量分别比对照显著增加32.3%和36.2%;不同硫、硒浓度配施处理对茎瘤芥13种矿质元素积累的影响不同,主要显著促进了茎、叶对氮、磷、钾、硫、硒的吸收积累,而对其它元素的影响不显著,其中茎、叶的硒含量以S50Se3处理最高,硫含量以S100Se1处理最高;各硫硒配施处理对膨大茎营养品质的影响不同,其中S50Se1和S50Se3处理能显著提高膨大茎有机硒、总氨基酸和粗蛋白含量,而对维生素C和可溶性糖含量无显著影响.可见,适宜的硫硒配施可以明显促进其对矿质元素的吸收,提高植株干物质积累,有效改善茎瘤芥膨大茎营养品质,且硫硒配施用量以S 50mg/kg、Se 1mg/kg为宜.  相似文献   

11.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

12.
The possible effects of selenium (Se) foliar spraying and drought were studied for 3 months in potato (Solanum tuberosum L.) cultivar Desiree in Ljubljana, Slovenia. Four combinations of treatments were conducted: well-watered plants with and without Se foliar spraying, and drought exposed plants with and without Se foliar spraying. The following parameters were monitored 2 and 4 weeks after treatments: net photosynthesis, transpiration rate, quantum yield of photosystem II (PSII), and respiratory potential measured by electron transport system activity. After 3 months of treatments, leaf water potential and tuber yield were determined. The content of Se in tubers was measured after harvesting time. Several effects of drought and Se foliar spraying and their combinations were found. Net photosynthesis and respiratory potential were lower in drought exposed plants 4 weeks after treatments. Se induced higher respiratory potential in the leaves 4 weeks after treatments. Higher efficiency of energy conversion in PSII, expressed by a higher effective quantum yield, was observed in Se treated plants 2 weeks after treatments. Foliarly applied Se was efficiently absorbed by plant leaves and transported to the tubers.  相似文献   

13.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

14.
From measurements of viability after exposure of tubers to natural overwintering in the soil and 6 weeks exposure at 2 C, species cold tolerance of the tubers was ranked in decreasing order: yellow nutsedge `I' (Cyperus esculentus L.), an ecotype originating in Illinois; yellow nutsedge `G', an ecotype originating in Georgia; and purple nutsedge (Cyperus rotundus L.). The ratios of unsaturated-saturated fatty acids in tuber triglycerides, tuber polar lipids, and leaf polar lipids followed the same order as the cold tolerance rankings, with the most cold-hardy species having the highest ratios. Lipid content was less than 1% of dry weight in purple nutsedge tubers, but was from 5 to 7% in both yellow nutsedge tubers. Starch, sugar, and lipid contents increased significantly in the hardy yellow nutsedge `I' tubers during a 6-week exposure to 2 C, but did not change in the susceptible purple nutsedge tubers; only sugar increased in yellow nutsedge `G' tubers after this treatment. Protein content was not altered by the 2 C treatment in any of the tubers. Apparently, several factors involving starch, sugar, lipids, and fatty acids are related to the differences in tolerance to cold in these species.  相似文献   

15.
Experiments were undertaken with field-grown potato (Solanum tuberosum L.) plants to test the hypothesis that altering leaf:tuber water potential gradients within a plant subjected to low soil moisture will allow greater Ca accumulation in tubers and reverse Ca deficiency-related tuber necrosis. Antitranspirant formulations containing a wax emulsion and a spreader/sticker surfactant increased leaf water potential during a drought episode, significantly reducing the potential gradient that develops between leaf and tuber during a period of stress. Increased leaf water potential in treated plants was associated with decreased leaf Ca and increased tuber Ca. Tuber necrosis was found to be reduced in treated plants, thus increasing tuber quality.  相似文献   

16.
The effect of foliar and soil applied paclobutrazol on potato were examined under non-inductive condition in a greenhouse. Single stemmed plants of the cultivar BP1 were grown at 35(±2)/20(±2) °C day/night temperatures, relative humidity of 58%, and a 16 h photoperiod. Twenty-eight days after transplanting paclobutrazol was applied as a foliar spray or soil drench at rates of 0, 45.0, 67.5, and 90.0 mg active ingredient paclobutrazol per plant. Regardless of the method of application paclobutrazol increased chlorophyll a and b contents of the leaf tissue, delayed physiological maturity, and increased tuber fresh mass, dry matter content, specific gravity, dormancy period of the tubers. Paclobutrazol reduced the number of tubers per plant. A significant interaction between rates and methods of paclobutrazol application were observed with respect to plant height and tuber crude protein content. Foliar application gave a higher rate of net photosynthesis than the soil drench. Paclobutrazol significantly reduced total leaf area and increased assimilate partitioning to the tubers. The study clearly showed that paclobutrazol is effective to suppress excessive vegetative growth, favor assimilation to the tubers, increase tuber yield, improve tuber quality and extend tuber dormancy of potato grown in high temperatures and long photoperiods.  相似文献   

17.
H. W. Howard 《Genetica》1969,40(1):233-241
In the variety Arran Victory, which has purple tubers, there was found a tuber half purple and half pink. The pink half produced a plant which had pink tubers with small purple patches. X-ray irradiation of these tubers gave plants which had about five per cent of pink tubers without the purple patches. Breeding and eye-excision experments showed that the pink tubers with small purple patches were periclinal chimeras in which geneP had been lost from L1, L2 plus L3 still having geneP as in normal Arran Victory. The pink tubers without the purple patches had no geneP in L1, L2 and L3. The chimerical pink tubers had purple sprouts, the full pink tubers pink sprouts. The pigmented layer in the tubers of Arran Victory is the phelloderm (secondary cortex), not the primary outer cortex.  相似文献   

18.
Abstract The impacts of potato psyllid (Bactericera cockerelli) feeding on potato foliage on the free amino acids (FAAs) composition in potato leaf and tubers were determined under greenhouse conditions. The free amino acids in plant extracts were separated by high‐performance liquid chromatography, and in both leaf and tuber samples, at least 17 FAAs were detected. Psyllid feeding significantly changed the levels of several FAAs in both leaf and tuber samples. The concentration of leucine increased 1.5‐fold, whereas that of serine and proline increased 2‐ and 3‐fold, respectively. In contrast, the concentrations of glutamic acid, aspartic acid and lyscine were significantly reduced by 42.0%, 52.1% and 27.5%, respectively. There were also significant changes in the levels of FAAs in the Zebra chip (ZC) infected tubers compared with the healthy tubers, and the levels of six of the FAAs increased, and the levels of nine of the FAAs decreased. The results from this study indicate that potato psyllid causes major changes in free amino acid composition of plant tissues, and this change in plant metabolism may contribute to the plant stress as indicated by increased levels of proline in the leaves and hence promoting the development of plant diseases such as ZC disease.  相似文献   

19.
Translocation of Assimilates Within and Between Potato Stems   总被引:2,自引:0,他引:2  
Three aspects of translocation in potato were examined: (i)translocation within stems (ii) translocation between individualstems of a plant (iii) translocation between tubers followinginjection of 14C sucrose into a single daughter tuber. Assimilatesexported from single leaves of evenly illuminated potato stemsremained confined to the same side of the stem as the sourceleaf in a pattern consistent with the internal arrangement ofvascular bundles in the stem, and tubers borne on stolons verticallybelow the source leaf contained higher concentrations of 14Cthan those on the opposite side. Consequently 14C import intothe tubers bore little relationship to tuber growth rates. However,alteration of source/sink relations by pruning stems to a singlesouce leaf resulted in an even distribution of 14C throughoutthe vascular bundles of the stem and 14C import into the tubersbore a stronger relationship to tuber growth rates than to thephyllotactic relationship of the tubers with the source leaf. Labelling one stem of a potato plant resulted in little or nomovement of 14C into tubers on other unlabelled stems. However,removal of the unlabelled stems at ground level induced a significantmovement of 14C from the labelled stem to the tubers on unlabelledstems, this movement occurring via the mother tuber. Shadingthe unlabelled stems had less effect than stem removal. 14C sucrose injected into single daughter tubers was translocatedto other tubers on the same stem and also to tubers on a secondstem at the opposite end of the mother tuber. The sucrose wasconverted to starch in these tubers. The results favour the view that each potato stem functionsas an independent unit with potential for assimilate redistributionwithin a stem but with little or no carbon exchange occurringbetween stems, unless under severely altered source/sink patterns. Assimilates, 14C, autoradiography, potato (Solanum tuberosum L.), tuber growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号