首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
葡萄穗粳和果柄的呼吸强度与乙烯生成显著高于果粒,并呈现呼吸跃变型变化。落粒果柄中GA消失,ABA增加。降低贮藏温度、外源GA,NAA,AOA处理能抑制落粒,ABA、乙烯利则增加落粒率。剪去穗梗和果柄后果粒和果柄间不再形成离层,表明穗梗和果柄在落粒过程中起重要作用。  相似文献   

2.
病原侵染对采后葡萄激素水平的影响   总被引:1,自引:0,他引:1  
外源ABA处理采后葡萄可显著促进乙烯释放和抑制IAA的生成,加重葡萄落粒。乙烯利对ABA促进作用不明显,但显著抑制IAA和GA3的生成。葡萄感病后组织内源激素水平发生了变化:ABA含量显著增加,乙烯释放率增大,IAA含量显著减少,这种变化趋势在果梗中尤为突出。  相似文献   

3.
糯米糍荔枝裂果的生理机理与防裂效果研究   总被引:1,自引:0,他引:1  
彭坚  席嘉宾 《广西植物》2003,23(1):65-68,72
以果实易裂品种糯米糍荔枝为材料,对果皮内与裂果有关的一些生理指标以及两种处理硝酸钙(Ca(NO3)2)和赤霉素(GA)的防裂效果进行了探索性研究。结果表明:在果实发育初期,果皮内的水溶性果胶和原果胶的含量均升高,且原果胶含量的增长幅度大于水溶性果胶。除果实成熟期外,果胶脂酶(PE)和多聚半乳糖醛酸酶(PG)的活性一直呈上升趋势,且水溶性果胶的含量与PG的活性有显著正相关关系。纤维素酶(CX)在整个果实发育期都表现出较高的活性且有两次明显的活性高峰。同时还发现除果实成熟期外,Ca(NO3)2处理能增强PE和PG活性,但对CX则有抑制作用。此外,Ca(NO3)2处理和GA处理均能明显地改善糯米糍荔枝果皮质地的组成,使果实的裂果率明显降低,且GA处理的效果要明显好于Ca(NO3)2处理。  相似文献   

4.
以‘辽河4号'脱皮鲜食核桃果实为试材,经60Co γ射线辐照处理和聚乙烯(PE)保鲜袋包装后贮藏于(25±3)℃和(20±3)℃条件下,测定了相关生理指标的变化,探究60Co γ射线辐照对鲜食核桃萌芽生理的影响.结果表明,在(25±3)℃和(20±3)℃的贮藏条件下,对照组鲜食核桃分别在贮藏12和20 d 时开始发芽,处理组核桃在贮藏期间未出现发芽现象;在对照组鲜食核桃胚芽萌发期间,其呼吸强度、可溶性蛋白质和游离氨基酸含量及脂氧合酶(LOX)、过氧化氢酶(CAT)、过氧化物酶(POD)活性总体呈上升趋势,脂肪含量和脂肪酶(LPS)活性则降低; 而60Co γ射线辐照有效地减缓了鲜食核桃脂肪、可溶性蛋白质及游离氨基酸含量的下降速度及其呼吸代谢强度,提高了POD活性,却抑制了LOX、LPS、超氧化物歧化酶(SOD)和CAT的活性,从而阻碍了其胚芽的萌发,以达到延长其贮藏期的目的.  相似文献   

5.
豌豆叶绿体脂氧合酶(LOX)活性在连体叶片衰老过程中变化不大。ABA处理离体叶片2d叶绿体LOX活性升高,处理时间延长活性下降。抗氧化剂α-生育酚、谷胱甘肽、没食子酸丙酯抑制豌豆叶绿体LOX活性。脂质过氧化产物丙二醛对豌豆叶绿体LOX和大豆纯LOX-1的活性均有抑制作用,大豆LOX-1能促进离体豌豆叶绿体膜脂过氧化作用。因此,豌豆叶绿体LOX可能参与叶片衰老过程中叶绿体膜结构和功能的改变,又受膜脂过氧化产物的制约。  相似文献   

6.
赤霉素和萘乙酸对柿果实采后成熟软化生理指标的影响   总被引:1,自引:0,他引:1  
以采后'富平尖柿'果实为试材,常温下用60 mg/L赤霉素(GA3)和20 mg/L α-萘乙酸(NAA)进行处理,考察柿果实成熟软化相关生理指标及果胶物质代谢在贮藏过程中的变化,以明确GA3和NAA处理对柿果实贮藏效果的影响.结果显示:GA3、NAA处理果实的贮藏时间分别比对照延长了4 d和10 d;GA3和NAA处理可显著延缓果实硬度的下降进程,有效降低果实呼吸强度和乙烯释放量,且呼吸高峰和乙烯高峰的出现明显迟于对照;果实多聚半乳糖醛酸酶(PG)活性的升高受到抑制,从而延缓了原果胶的降解以及水溶性果胶含量的增加,阻碍了果实的软化进程.试验表明,GA3和NAA处理可有效延缓柿果实的后熟软化,延长其贮藏期限, 并以GA3的效果尤为明显.  相似文献   

7.
在(10±1)℃下贮藏的‘福眼’龙眼果实果肉自溶指数和自溶程度随着贮藏时间的延长而增加。果肉细胞壁干重、原果胶、纤维素、半纤维素和细胞壁蛋白含量不断减少。果肉果胶酯酶(PE)活性下降;多聚半乳糖醛酸酶(PG)活性在贮藏6~12d以及纤维素酶活性在贮藏0~12d期间均明显增强,到第12天达到活性高峰,之后下降。但在贮藏0~24d期间,PE、PG和纤维素酶仍然保持较高活性,贮藏24d之后快速下降。β-半乳糖苷酶活性在贮藏0~24d期间略有下降,而在贮藏24d后,活性增强,尤其是贮藏30d后,活性急剧升高。  相似文献   

8.
以采后"红地球"葡萄果实为试材,分别设置对照(CK)、250μL/L臭氧处理(O3)、0.3%海藻酸钠涂膜处理(M)、250μL/L臭氧+0.3%海藻酸钠涂膜处理(O3+M),在(0±0.5)℃条件下贮藏,通过测定贮藏过程中葡萄可溶性固形物含量、可滴定酸含量、呼吸强度、硬度、过氧化物酶(POD)、超氧化物歧化酶(SOD)、几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)的活性以及膜脂过氧化物质丙二醛(MDA)和总酚含量等的变化,统计果实失重率与腐烂率情况,观察各处理对葡萄保藏效果的影响。结果表明:与对照相比,250μL/L臭氧处理、0.3%海藻酸钠涂膜及250μL/L臭氧+0.3%海藻酸钠涂膜复合处理均能显著降低葡萄果实的失重率和腐烂率,抑制葡萄果实的呼吸上升,延缓硬度下降,提高果实抗性相关酶(POD、SOD、GLU、CHI)的活性,减少膜脂的过氧化程度,延缓果实总酚含量下降,有效改善葡萄的贮藏品质,并以250μL/L臭氧+0.3%海藻酸钠涂膜复合处理对葡萄果实保鲜效果最佳。  相似文献   

9.
葡萄采后施用外源ABA可显著刺激其呼吸速率和乙烯释放率,ABA对呼吸的促进作用大于C2H4;当葡萄被交链孢和灰霉葡萄抱侵染后,呼吸和乙烯释放均加强。交链孢侵染的葡萄呼吸速率在孢子形成后2d达最大值,而灰霉葡萄孢侵染的葡萄呼吸速率在孢子形成时即达最大值。葡萄感病后,落粒现象加重,组织内源ABA和C2H4含量增加,IAA和GA3含量减少。  相似文献   

10.
IAA、ABA和乙烯利对梨枣采后某些生理指标的影响   总被引:4,自引:0,他引:4  
梨枣采后乙烯释放量、丙二醛(MDA)含量和脂氧合酶(LOX)活性呈上升而硬度、维生素C(VC)含量和好果率呈逐渐下降趋势.IAA、ABA、乙烯利促进枣果采后初期的乙烯生成,提高梨枣中MDA含量和LOX活性,加速梨枣软化,降低梨枣的VC含量和好果率;ABA的作用更加明显.LOX活性与果肉硬度及好果率呈显著负相关,暗示LOX与枣果的软化衰老有一定关系.  相似文献   

11.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

12.
The activity of cellulase, cellulase-isoenzymes and polygalacturonase (PG) in the shoot/peduncle and calyx abscission zones (AZ-A and AZ-C, respectively) of young and mature Shamouti orange (Citrus sinensis (L.) Osbeck) fruit explants was tested after extraction of total enzymes from either exo- or endo-cellular fractions from fruits treated with ethylene or 2,4-D. Ethylene enhanced and 2,4-D delayed both abscission and the activity of exo- and endo-cellular cellulase and PG. When tested separately in the exo- and endo-cellular fraction, the effects of both growth regulators on the activity of almost all cellulase isoenzymes were similar, irrespective of their location in the tissue. In mature fruits no abscission occurred in AZ-A, and yet the activity of cellulase and PG was regulated by the hormones as in abscising AZs. This was also true for total activity of exo- and endo-cellular cellulase and PG. Similar effects were observed when the activity of cellulase isoenzymes was tested in AZ-A of non-abscising mature fruits. It is suggested that whenever the increase in activity of the hydrolytic enzymes, and especially cellulase, is not followed by abscission, the substrate is either immune or not available to the enzymes.  相似文献   

13.
The mechanism of ABA-induced callus formation was studied in sterile bud cultures of Citrus [Citrus sinensis (L.) Osbeck] on defined media. ABA was found to promote callus formation in the abscission zone between the petiole and the branch while inhibiting bud growth. The promoting effect of ABA was dependent on the physiological state of the shoot from which buds were excised, and on the size of the explant. Callus formation was highest in autumn and summer (i.e. younger) buds, and lowest in older buds excised from previous summer flush. GA was only slightly active in promoting callus formation when applied separately, but showed a highly synergistic effect when applied with ABA: maximal callus formation was attained at a combination of 10?5M ABA and 10?6 MGA in the medium. Subcultures of ABA-induced callus revealed that ABA inhibited the growth of isolated subcultured callus, while IAA and kinetin, and especially GA, promoted its rapid proliferation. A general decrease in protein synthesis was found in the abscission zone during the first 5 days of induction, while total protein content changed only slightly. The results suggest that ABA-induced callus formation in Citrus bud explants is a multiphasic phenomenon involving, at least, two stages: (1) activation of certain cells in the abscission zone by ABA, resulting in the formation of callus layers, and (2) subsequent proliferation of the callus tissue, which is dependent on the hormonal balance in the explant. This growth-promoting effect of ABA seems to be a general phenomenon in explants exposing a cut-surface.  相似文献   

14.
棉花幼铃脱落过程中IAA、ABA、MDA含量及SOD、POD活性的变化   总被引:3,自引:0,他引:3  
经去柱头阻止受精或去叶处理即将脱落的棉幼铃,随脱落进程加快,其内在生理变化均伴随膜脂过氧化加剧、ABA含量增加、POD活性提高,在脱落前达到最大值,而正常幼铃的变化平稳;IAA含量则逐渐减少,并明显低于正常幼铃的;SOD活性在开花后的前3天呈上升趋势,并明显高于正常铃的,以后又逐渐下降。超氧自由基(O2)的积累及其引起的膜脂过氧化伤害可能是影响幼铃内源激素平衡,导致幼铃脱落的重要原因之一。  相似文献   

15.
Activities of degrading enzymes, hormones concentration and zymogram patterns were investigated during control and ethylene-induced abscission of tomato pedicel explants. Exogenous ethylene accelerated abscission of pedicel explants. It was showed that IAA concentration in abscission zone tended to decline at first and then was reduced before separation in control and ethylene-treatment. Moreover, IAA (indole acetic acid) and ABA (abscise acid) concentrations were elevated in each segment when exposing to ethylene, but GA1 + 3 (gibberellin1 + gibberellin3) concentration was decreased in abscission zone and the proximal side. Activities of cellulase, polygalacturonase and pectinesterase in the explants were induced in the separating process and strengthened by ethylene. However, comparing with the proximal side, cellulase and polygalacturonase activities in abscission zone and distal side were higher. Electrophoresis of isozymes revealed that at least three peroxidase and three superoxidase isozymes appeared in the explants, respectively. One peroxidase isozyme exhibited differentially among the three positions in control and ethylene-treatment. One esterase isozyme weakened or disappeared in the following hours, but three novel esterase isozymes were detectable from beginning of the process. The data presented support the hypothesis that the distal side, together with abscission zone of explants plays a more important role in separation than does the proximal side. The possible roles of degrading enzymes, hormones and isozymes in three segments during ethylene-induced abscission of tomato pedicel explants are discussed.  相似文献   

16.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

17.
Abscission: role of cellulase   总被引:30,自引:25,他引:5       下载免费PDF全文
Abeles FB 《Plant physiology》1969,44(3):447-452
Cellulase (β-1,4-glucan-glucanohydrolase EC 3.2.1.4) activity increased during abscission and was localized in the cell separation layer of Phaseolus vulgaris L. cv. Red Kidney (bean), Gossypium hirsutum L. cv. Acala 4-42 (Cotton) and Coleus blumei Benth. Princeton strain (Coleus) abscission zone explants. Cellulase activity was optimum at pH 7, was reduced by one-half after heating to 55° for 10 min, and was associated with the soluble components of the cell. Explants treated with aging retardants (indoleacetic acid, 6N-benzyladenine, and coumarin), CO2, actinomycin D or cycloheximide had less cellulase activity than untreated controls. Ethylene increased cellulase activity of aged explants after a 3-hr lag period but had no effect on cellulase activity of freshly excised explants. It was concluded that 1 of the roles of ethylene in abscission is to regulate the production of cellulase which in turn is required for cell separation.  相似文献   

18.
The role of ethylene and 2,4-D in the abscission process, and the induction of cellulase isoenzymes in the abscission zones of Citrus fruit at two physiological stages of fruit development, were studied using a new staining technique for the detection of cellulase isoenzymes in polyacrylamide gels following electrophoretic separation. Four to seven isoenzymes were detected in the shoot-peduncle (zone A) and peduncle-fruit (zone C) abscission zones; at least two of them could be detected at excision time, and of these at least one could not be connected with abscission. In the young fruit, ethylene enhanced and 2,4-D delayed both abscission and the formation of several isoenzymes. In the older fruit, ethylene enhanced and 2,4-D delayed the formation of isoenzymes at a time where no abscission occurred any more in zone A. A slower but significant increase in most of the isoenzyme activity detected was also observed in abscission zone A of untreated older fruit explants after excision. These results fully agree with those reported earlier in relation to total cellulase and polygalacturonase activity (Greenberg et al., Physiol. Plant. 34: 1, 1975) tested at the same stages of fruit development. It is suggested, that the generality of the concept that a rise in hydrolytic enzymes in the abscission zone is necessarily followed by separation of the organ should be re-evaluated.  相似文献   

19.
The physiological and molecular events of ethylene‐induced abscission in mature fruit calyx, laminar and floral abscission zones of cv. Valencia orange were examined. Continuous exposure of fruit explants to 5 µl 1−1 ethylene for 2 to 40 h resulted in marked increases in endo‐1,4‐β‐glucanase (cellulase) and polygalacturonase (PG) activities in calyx abscission zones. Two abscission‐related cellulases and one PG were found. The major peak of cellulase activity corresponded to a pI of 8.0 and molecular weight of 51 kDa, whereas the minor cellulase peak had a pI of 5.5. The abscission polygalacturonase had a pI of 5.5. Calyx abscission zone RNA was amplified with degenerate primers based on sequence of the purified Valencia orange calyx abscission cellulase, and cloned. The two partial cellulase cDNA clones were 59% identical at the nucleotide level. Genomic Southern analysis suggested that Valencia orange contained two groups of cellulase genes. A full‐length cDNA clone from each group was isolated from a cDNA library prepared from ethylene‐induced calyx abscission zone mRNA. Both genes were expressed in ethylene‐induced calyx, laminar and floral abscission zones, but were not expressed in non‐induced abscission zones or mature leaves treated with or without ethylene, young bark or young fruit of Valencia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号