首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
  国内免费   24篇
  2022年   1篇
  2021年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   7篇
  1995年   1篇
  1994年   13篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   10篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1963年   1篇
  1957年   2篇
  1956年   2篇
  1955年   1篇
排序方式: 共有117条查询结果,搜索用时 14 毫秒
1.
2.
采用RT-PCR差异显示法,从水稻(Oryza sativa L.)幼苗克隆了1个受冷抑制表达的cDNA片段.该片段序列与水稻叶绿体基因组编码ATP合酶CF0Ⅲ亚基的atpH基因完全同源,且覆盖了atpH基因编码区.以Northern杂交分析了水稻幼苗在冷处理不同时间后的atpH基因转录水平,结果表明,atpH基因的转录受冷抑制,在冷处理第1天就明显下降,第2天以后完全受抑制.  相似文献   
3.
植物的乙醇酸氧化酶   总被引:4,自引:0,他引:4  
乙醇酸氧化酶存在于植物细胞过氧物酶体中,是一种黄素蛋白,以FMN为辅基,含8个亚基。催化乙醇酸氧化为乙醛酸和乙醛酸氧化为草酸。受光活化。硫化钠和氰化物促进其活性:巯基抑制剂、α-羟基磺酸类、α-羟基丁炔酸抑制其活性。多种代谢物对其活性有调节作用。为光呼吸的关键酶之一,其活性随植物发育、矿质营养及感病而发生变化。  相似文献   
4.
玉米黄化苗经光照(80μmolm-2s-1)后超氧物歧化酶(SOD)活性提高,放线菌酮抑制光下SOD活性的提高。照光能提高玉米幼苗O-2产生速率;百草枯(0.01mmol/L)可提高照光和黑暗条件下SOD活性,抗坏血酸和甘露醇却消除光对SOD的激活作用。  相似文献   
5.
研究了杂交水稻青优159和广西四号及其亲本功能叶片的光合速率、叶绿素含量、叶绿素-蛋白复合物及诱导荧光动力学特性。这二个杂交水稻的光合速率分别高于其亲本,其超亲优势分别为18.72%和18.2%,平均优势分别为29.6%和26.2%。杂交水稻功能叶片的叶绿素-蛋白复合物在650nm和675nm处光密度扫描峰面积具有明显的杂种优势,并与光合速率之间的较密切的正相关关系;叶绿素诱导荧光动力学特征参数F  相似文献   
6.
光对豌豆细胞色素氧化酶活性的影响(简报)   总被引:2,自引:0,他引:2  
  相似文献   
7.
8.
乙醇酸氧化酶(EC.1.1.3.1,GO)是光呼吸中的关键酶,过去对其电泳行为和等电点的报告互不一致。Grodzinski和Col-man(1972)将菠菜、烟草等植物部分纯化的GO酶液在pH8.3的聚丙烯酰胺凝胶中电泳,活性染色后出现两条活性带,两者对FMN的依赖性有一定差异。Kerr和Groves(1975)对豌豆叶片部分纯化的GO酶液进行等电聚焦电泳,表明其pI值大于9.6.Behrends等(1982)将绿色黄瓜子叶的酶液经聚焦层析,发现GO活性分布在pH8.7附近。但Nishimura等(1983)发现在pH8.9的凝胶中南瓜子叶GO不迁移,而在pH4.5的凝胶中则出现一…  相似文献   
9.
采后预处理使甜橙果皮含水量减少,改善理化性状,降低果实对低温的敏感性,从而控制了福斑病的发生,使发病率从61.7~66.0%降至4.7~6.7%。低温贮藏的呼吸强度和内源乙烯的生成也受到明显的抑制,但对果实的主要内含物和质量并无影响。控制褐斑病发生的适宜的预处理,是在10~15℃和85~90%相对湿度下处理7~10d,使果实重耗约2.5~4.0%。  相似文献   
10.
水稻黄化幼苗用白光照射3~5小时后可诱导出乙醇酸氧化酶活性。绿色水稻幼苗在黑暗中乙醇酸氧化酶活性逐渐下降以至消失,再给以照光又恢复酶活性。亚胺环己酮对光的诱导及再诱导均有抑制作用。在黑暗中真空渗入乙醇酸于黄化幼苗可诱导出乙醇酸氧化酶活性,渗入乙醇酸加FMN能使酶活性迅速增强。弱的白光以及红、绿,蓝光均有诱导作用。因此认为光的诱导作用是使黄化幼苗形成乙醇酸——作为诱导物,以诱导乙醇酸氧化酶的新合成。光也可以加速叶组织内FMN的合成,从而提高乙醇酸氧化酶的活性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号