首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
用水稻愈伤组织比较了Ac启动子、35S启动子与Ubi启动子控制下Ac转座酶基因(Ts)的表达对Ds因子切离频率的影响。结果表明Ubi启动子与Ac转座酶编码区嵌合基因(Ubipro-Ts)反式激活Ds因子的切离频率最高,达到了72.9%。通过杂交将Ubipro-Ts基因导入Ds因子转化植株,得到9株Ubipro-Ts基因与Ds因子共存的F1代杂交水稻植株,其中有8株Ds因子发生了切离。用Inverse-PCR的方法从其中一株杂交植株中克隆到Ds因子的旁邻序列,其DNA顺序与亲本中Ds因子原插入位点的序列不同,表明Ds因子转座到了新的基因组位点。  相似文献   

2.
使用农杆菌介导的方法转化粳稻品种中花11,构建了在第4号染色体不同位置插入了Ds(dissociation)因子的水稻转化群体和带有Ac(activator)转座酶基因的转化植株。将携带了Ac转座酶基因的植株与不同Ds转化植株杂交,杂交F1代同时带有Ac转座酶和Ds因子(Ac/Ds植株)。用PCR方法检测了杂交F1代Ds的切离频率,结果发现靠近第4号染色体着丝粒附近的Ds转座子切离频率低,而靠近第4号染色体末端区域的Ds转座子切离频率高,这表明Ds转座子的原始插入位置对其杂交后代的切离频率有很大的影响,推测与原始插入位点附近的染色体结构有关。  相似文献   

3.
利用本实验室构建的转Ac(AcTPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ac×Ds的杂交组合354个.检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性.结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%.检测到T-DNA可插入到编码蛋白的基因中.在Ac×Ds的F2代中,Ds因子的转座频率为22.7%.对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制--转座和不完全切离等现象.获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录.探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略.  相似文献   

4.
利用本实验室构建的转Ac(Ac TPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ae×Ds的杂交组合354个。检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性。结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%。检测到T-DNA可插入到编码蛋白的基因中。在Ac×Ds的F2代中,Ds因子的转座频率为22.7%。对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制——转座和小完全切离等现象。获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录。探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略。  相似文献   

5.
含Ds转座因子的T-DNA在水稻染色体上的分布研究   总被引:1,自引:1,他引:0  
应用农杆菌介导的方法获得了有Ds因子插入的3000多株水稻转化群体, 用Inverse PCR方法, 从部分独立转化植株中分离了590条含Ds因子的T-DNA插入位点处的右侧旁邻水稻染色体序列. 根据旁邻序列中T-DNA右边界与侧翼水稻序列之间的插入序列的特征可分成6个主要类别, 其中类型Ⅰ是主要类型, 为通常的T-DNA整合, 即T-DNA右边界序列与水稻染色体序列相连, 或者其间插入小于50 bp的序列片段; 类型Ⅱ为T-DNA右边界旁先接T-DNA载体序列, 再与水稻序列相接的重组类型. 340个类型Ⅰ和Ⅱ的旁邻序列通过与已知的水稻染色体序列数据库一致性比较分析, 确定了它们在水稻染色体上的分布位置, 构建了一个Ds因子在水稻12条染色体插入的框架结构. 这340个有Ds因子插入的位点在整个染色体上平均相距0.8 Mb. 分析在第1条染色体上T-DNA(Ds)插入情况显示有21%的频率插入到预测基因的外显子中. T-DNA(Ds)在染色体上分布位置的确定, 使我们可以选择合适的Ds因子插入株作为起始株系, 导入Ac转座酶基因后, 使Ds发生转座, 从而获得新的Ds插入突变株, 为进一步利用Ds转座标签法分离水稻基因创造了条件.  相似文献   

6.
赵丁丁  乔中英  程孝  王建平  焦翠翠  孙丙耀 《遗传》2014,36(12):1249-1255
玉米转座元件Ac/Ds是hAT转座子家族的成员, 导入水稻基因组后具有转座活性, 尽管转座机制还不完全清楚, 但它们通常经保守的非复制型“剪切-粘贴”过程转座。研究表明, 在Ac编码的转座酶作用下, Ds从原位点切离后常优先重新插入到连锁位点。文章利用TAIL-PCR技术从水稻一个Ds插入突变体及其回复突变体中分离Ds侧翼序列, 结合生物信息学分析方法, 对Ds在突变体上插入位点、回复突变体内切离足迹和重新插入位点进行了分子鉴定。结果显示, 突变体中Ds从3号染色体切离后, 在原插入位点残留了8 bp足迹序列(CATCATGA), 引起Ds标记基因外显子和内含子数目增加, 从而影响基因结构。切离后的Ds重新插入回复突变体第2和第6号染色体上, 分别编码烟草胺氨基转移酶和衰老相关蛋白的2个基因的编码区。因此, 典型的“剪切-粘贴”机制不能完全解释Ds的转座行为, Ds转座存在“剪切-复制-粘贴”的特点。  相似文献   

7.
Ac/Ds(GUS)结构介导的水稻启动子捕获系统的建立   总被引:5,自引:0,他引:5  
构建了基于Activator/Dissociation(β-glucuronidase)[简称Ac/Ds(GUS)]结构的捕获质粒p13B,用于分离水稻基因启动子.以此质粒用衣杆菌介导的方法转化粳稻品种中花11的胚性愈伤组织,对获得的18个独立转化株的T2代植株进行了抗除草剂筛选,从141个抗除草剂转基因植株中用PCR方法检测到其中37株是Ds因子发生了转座的植株,而且这种转座到新位置上的Ds因子是遗传的.初步观察到其中5株的GUS染色呈阳性.  相似文献   

8.
用使质粒pKU3所携带的玉米Ac因子的5'末端和中间编码转座酶的基因片段分别发生缺失的方法构建成质粒pKU3(△B)和pKU3(△H)。质粒所携带缺失的Ac因子单独存在时都无自主转座能力,但当Ac(△H)和Ac(△B)共存于一个细胞时,由于Ac(△B)产生转座酶的互补作用促使Ac(△H)恢复转座能力,而当Ac(△B)和Ac(△H)因子被分离后即获得Ac(△H)因子的稳定插入突变株,它可克服因突变不稳定而给用转座因子标签法分离基因所造成的困难。将双因子系统导入烟草原生质体并获得再生植株,从而选得卡那霉素抗性植株,显示Ac(△H)因子已经从原质粒上的NPTⅡ前导顺序中切离。Sortharnblot和PCR分析表明:Ac(△H)和Ac(△B)因子已经整合在转化烟草的基因组并能遗传至F1和F2代植株中;有些植株后代中已检测不到Ac(△B)因子的存在,说明它们的Ac(△B)因子已与Ac(△H)因子相分离;各转化植株中Ac(△H)因子在基因组中的插入拷贝数从一个到几个不等;初步显示Ac(△H)因子多数插入或转座在基因组的结构基因中。  相似文献   

9.
获得无选择标记转基因植株是进行重复转基因及消除转基因植株中标记基因潜在危害性的关键。实验采用了Ac/Ds转座子系统在水稻(Oryza sativa,L.)中进行无hpt选择标记的转基因。将含有目的基因bar的Ds元件和hpt标记基因置于同一个T-DNA中,通过农杆菌(Agrobacterium tumefaciens)EHAl05介导将Ac-T-DNA及Ds-T-DNA分别转入到不同的水稻植株,再将单拷贝的Ac-T-DNA植株与单拷贝的Ds-T-DNA植株杂交得到同时含有Ac和Ds元件的F1植株,Fl自交产生F2后代,F2植株中转座后的Ds元件与T-DNA独立分离,在总共100株F2水稻植株中筛选得到2株只含有Ds元件插入而无hpt标记基因的转基因水稻植株。结果表明,利用Ac/Ds转座子系统在水稻中获得无选择标记的转基因植株是可行的。  相似文献   

10.
孙丙耀  谈建中  陆小平  曲春香  万志刚  顾福根 《遗传》2006,28(12):1555-1561
采用TAIL-PCR技术从经鉴定含Ac/Ds双元件的材料中扩增Ds侧翼序列并测序, 对水稻Ac×Ds后代基因组DNA进行Ac和Ds插入的PCR分析。利用NCBI的BLAST软件, 以Ds侧翼序列为待查询序列进行GenBank在线搜索比对, 获得Ds插入相关基因的染色体定位和功能注释等信息。对扩增的93个有效Ds侧翼序列进行分析, 结果显示, 有21个水稻杂交后代中Ds插入于基因编码区, 其余72个插入在基因间序列, 其中12个插入在特定基因的上游3 kb以内的间隔区。本研究强调了提高Ds侧翼序列扩增和Ac/Ds植株筛选效率的技术关键。  相似文献   

11.
用无启动子的GUS报告基因捕获水稻基因启动子   总被引:4,自引:1,他引:3  
构建了嵌合质粒p13DGUTs,它是在Ds转座子中插入了无启动子的B.葡萄糖醛酸酶报告基因(GUS),用于分离水稻基因启动子。将p13DGUTs转化粳稻品种中花11的胚性愈伤组织,获得了496个转基因植株。抗性愈伤组织与转基因植株的GUS染色与PCR分析表明整合在水稻染色体上的Ds因子都发生了随机跳跃。转基因植株T0代与部分T1代的GUS染色结果表明,M92转基因植株中Ds转座子整合位置上游的水稻基因启动子指导GUS基因的表达及表达的特性是可遗传的。文章对此方法在分离水稻基因启动子与基因上的应用进行了讨论。  相似文献   

12.
使用电激法将分别含玉米转座因子AC或Ds因子的质粒DNA同时导入水稻花药悬浮系细胞团,得到转化抗性意伤组织,并分化成可育植株。对一些植株的DNA进行了Southern分析和PC且扩增,发现导入的外源DNA已整合到了水稻染色体上而且Ds因子已发生了转座。抗性测定表明转化植株F1代和F2代种子中的大多数仍有Ds因子存在。  相似文献   

13.
The geminivirus miscanthus streak virus (MiSV) was used as a gene vector to study the transposition of the maize Ds element in rice protoplasts. Efficient excision of the Ds from the MISV vector was observed only when the MiSV vector was allowed to replicate and the plasmid expressing the transposase gene encoded by Ac was co-transfected. Under the same condition, the Ds carrying a hygromycin phosphotransferase gene (Ds::HPT) was also efficiently excised. Hygromycin-resistant calli were obtained by culturing these transfected protoplasts in order to examine the transposition of the excised Ds::HPT into the rice genome. In five out of 16 calli examined, the Ds::HPT, but not the vector sequence, was integrated into the rice genome and 8 bp target site duplication typical of Ac/Ds transposition was generated. These results show that the Ds::HPT inserted in the MISV vector transposed directly into the rice genome. This demonstrates the direct transposition of a cloned plant transposable element into the plant genome. Implications of these finding are discussed.  相似文献   

14.
15.
16.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

17.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

18.
Two kinds of T-DNA constructs, I-RS/dAc-I-RS and Hm(R)Ds, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plants carrying a gene for Ac transposase under the control of the cauliflower mosaic virus 35S promoter. In F2 progenies, excision of the element was detected by PCR analysis and re-integration of the element was investigated by Southern blot analysis. The frequency of the excision of the element was found to vary from 0 to 70% depending on the crossing combination. The frequency of the number of individual transposition events out of the total number of F2 plants with germinal excision was 44% in one crossing combination and 38% in the other. In the most efficient case, 10 plants with independent transposition were obtained out of the 49 F2 plants tested. Linkage analysis of the empty donor site and the transposed Ds-insertion site in F3 plants demonstrated that one of five Ds-insertion sites was not linked to the empty donor site. The transgenic rice obtained in this study can be used for functional genomics of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号