首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对绿色木霉产纤维素酶的固态发酵条件进行研究,显示其最优产酶条件为:稻草:麸皮=3:2,水分250%,最佳氮源为0.5%(NH4)2SO4,最佳培养时间3天,温度30℃,接种量10%,初始pH6.0~7.0,在此条件下,每克干曲酶活分别高达18.4FPAU/g,56.7CMCU/g。同时对酶解作用条件进行了初步研究,发现pH5.2时对滤纸酶活力最高,pH4.8时对脱脂棉活力最高。降解温度以滤纸55℃,脱脂棉50℃为最佳。实验还发现乙醇对酶的降解有抑制作用。  相似文献   

2.
酶水解菊芋糖浆发酵生产琥珀酸的初步研究   总被引:6,自引:1,他引:5  
用产菊粉酶的一株黑曲霉菌株进行产酶发酵条件和水解条件研究,在30℃,pH 6.0,摇床转速200 r/min,发酵时间为3 d的最适产酶条件下,酶活可以达到45.9 U/mL.以总糖含量为85.2 g/L的菊芋粉为初始底物,最适酶水解条件为温度50℃,加黑曲霉培养液的量为10%(v/v),水解12 h后,水解率达到99.6%.用此酶解液在5 L搅拌发酵罐中进行琥珀酸发酵,初始还原糖浓度53.5 g/L,36 h发酵产琥珀酸43.8 g/L,琥珀酸产率0.83 g/g,糖利用率99.0%,琥珀酸生产强度1.22 g/(L·h).  相似文献   

3.
郭良昊  陈海秀  李松  张威  魏胜华 《菌物学报》2020,39(10):1948-1959
漆酶是一种绿色高效的多酚氧化酶,在降解双酚A方面具有巨大潜力。为降低发酵产漆酶的成本及考察漆酶在双酚A降解中的能力,本研究以麸皮和柚皮为主要基质,优化了栓菌固态发酵产漆酶条件,对优化后获得的漆酶在双酚A降解中的应用进行了研究。结果表明,在培养基组分为:麸皮和柚皮粉比例为6:4(W/W)、固液比1:2.5(W/V)、铜离子2%(W/W)、蔗糖3%(W/W)、硝酸钾2%(W/W)、稻壳20%(W/W)的条件下,栓菌发酵产漆酶的酶活最高,发酵11d后,酶活可达到38.4U/gds。当双酚A初始浓度为10μg/mL时,在55℃条件下酶解140min后,双酚A基本降解完全。  相似文献   

4.
培养条件对一株木霉产纤维素酶过程影响的研究   总被引:3,自引:0,他引:3  
采用固态发酵和连续监测正交实验结果的方法,研究了培养温度、初始pH值、液料比和接种量对一株木霉(Trichodermasp.)发酵过程中微晶纤维素酶活、CMC酶活和滤纸酶活的影响及影响程度。指出液料比在整个发酵过程中是对产酶影响最大的因素,温度在发酵初期影响较大,初始pH和接种量的影响均不显著。总体看来,培养温度、初始pH值、液料比和接种量分别为30℃、4、7和5%是比较合适的。  相似文献   

5.
对烟草节杆菌发酵产酶培养基进行了优化。在烟草节杆菌的初始发酵培养基条件下,肌酐酶初始酶活仅为9.2U/g湿菌。首先,通过肌酸诱导、金属离子筛选实验发现肌酸和金属离子对烟草节杆菌产肌酐酶酶活有重要影响;然后再通过碳源和氮源优化,以玉米浆和酵母膏作为复合氮源,可溶性淀粉为碳源,肌酐酶产量可达到108.5 U/g湿菌;在以上基础上,最后通过两次正交试验优化初始发酵培养基,最优培养基组成为:肌酸0.3%,玉米浆0.3%,可溶性淀粉0.4%,酵母膏0.7%,Fe~2+0.003%,Mn~2+0.006%,Mg~2+0.005%,K_2HPO_40.1%,KCl 0.5%。在优化后的发酵培养基条件下,烟草节杆菌肌酐酶酶活达到182.82 U/g湿菌,为初始发酵培养基酶活的19.87倍。  相似文献   

6.
采用响应面分析法对草酸青霉(Penicillium oxalicum)L5菌株液体发酵产果胶酶条件进行了优化。结果表明:桔皮粉、米糠及硫酸铵的添加量分别为4.85%、5.89%、0.97%,摇瓶初始pH为6.0~8.0,接种量为9%时,优化后的果胶酶活达54 391.70 U,是初始酶活18 148.00 U的3倍。另外,对其果胶酶性质进行了初步探讨,结果表明:该酶较适反应温度和pH分别为50℃和5.0;30~50℃时有较好的热稳定性,pH值为5.0时稳定性最佳。  相似文献   

7.
为解决玉米秸秆固废污染和秸秆资源有效利用问题,采用刚果红染色法(水解圈法)和3,5-二硝基水杨酸(DNS)法从玉米秸秆还田土壤中筛选到一株纤维素降解菌,并对该微生物进行生理生化和分子生物学鉴定,发现该菌株降解纤维素效果较好,经鉴定该菌株为纤维素链霉菌(Streptomyces cellulosae),命名为SJS-15,并对该菌株的酶学特性及纤维素降解能力进行了初步研究。结果表明,菌株SJS-15在发酵培养基中的纤维素酶活(CMC)峰值为30.5 U/mL,最适反应pH为6.0,滤纸酶活(FPA)峰值为25 U/mL,最适反应pH为8.0,两种酶均能在温度20~60 ℃,pH 4.0~10.0范围内保持较高酶活性。纤维素分解实验表明菌株SJS-15对玉米秸秆和滤纸有分解能力,40 d时对玉米秸秆降解率为35.6%(质量分数,下同),对滤纸降解率为18.6%。扫描电镜结果显示经菌株处理的玉米秸秆较对照有明显降解痕迹。菌株SJS-15具有良好的抗逆性和玉米秸秆纤维素分解能力,可作为玉米秸秆还田和堆肥发酵的高效菌株进行进一步研究。  相似文献   

8.
Aspergillus sp.脂肪酶发酵条件优化及酶学性质的研究   总被引:2,自引:0,他引:2  
作者为了得到一种热稳定性较好的脂肪酶新酶种,通过研究分离白极端环境的Aspergillus sp.的最佳产酶条件及其所产脂肪酶的酶学性质,得出了该菌产酶的最佳发酵条件为:以1%黄豆饼粉为氮源、0.2%玉米淀粉为碳源,1.5%橄榄油为诱导物,起始pH6.0左右。装量10mL(250mL三角瓶。摇瓶转速180r/min)、发酵时间为96h。在最佳发酵条件下可得最大发酵酶活36U/mL。Aspergillus sp.所产的脂肪酶的酶学性质是:最适pH为9.0,在pH5.0—10.0于20℃下放置24h后,残余酶活仍保持在起始酶活的90%以上;该酶的最适温度为50℃,50℃保温60min后仍保留70%以上的酶活。Aspergillus sp.所产脂肪酶的热稳定性较好。  相似文献   

9.
《菌物学报》2017,(6):718-729
利用基础产酶培养基从保藏的9株白腐真菌中筛选得到一株高产漆酶菌株毛栓孔菌XYG422,并通过单因素试验对该菌株发酵培养基及培养条件进行优化筛选,获得较高产漆酶能力,同时研究了该菌株对玉米秸秆的生物降解。研究结果表明:在液体发酵条件下,XYG422产漆酶最适宜碳氮源成分为玉米粉和酒石酸铵,菌株XYG422发酵条件优化后产漆酶酶活显著提升,该菌株最佳发酵培养条件为:玉米粉40g/L、酒石酸铵3g/L、温度30℃、pH 8.0、接种量5个直径1cm的菌饼、转速180r/min,诱导剂吐温-80和2,5-二甲基苯胺在低浓度时对菌株产漆酶有明显的促进作用,菌株产漆酶活性最高可达到41.6U/m L。该菌株表现出了对玉米秸秆较好的生物降解效率,培养60d后,玉米秸秆中木质素、纤维素和半纤维素的降解率依次为83.54%、50.65%和19.53%。  相似文献   

10.
毛壳霉CQ31的鉴定及固体发酵产木聚糖酶条件的优化   总被引:2,自引:0,他引:2  
从土壤中筛选出一株产木聚糖酶的真菌CQ31, 经鉴定后命名为毛壳霉CQ31。该菌能够利用几种农业废弃物固体发酵高产木聚糖酶, 玉米杆为最佳碳源。单因素优化试验表明: 以玉米杆为碳源, 胰蛋白胨为氮源, 初始水分含量80%, 初始pH值9.0为最佳产酶条件。在优化后的条件下培养7 d产木聚糖酶水平高达4897 U/g干基碳源, 此时甘露聚糖酶酶活达803 U/g干基碳源。因此, 毛壳霉CQ31固体发酵产木聚糖酶和甘露聚糖酶具有一定的工业化应用前景。  相似文献   

11.
Fructosyl transferase (FTase) production by Aspergillus oryzae CFR 202 was carried out by solid-state fermentation (SSF), using various agricultural by-products like cereal bran, corn products, sugarcane bagasse,cassava bagasse (tippi) and by-products of coffee and tea processing. The FTase produced was used for the production of fructo-oligosaccharides (FOS), using 60% sucrose as substrate. Among the cereal bran used, rice bran and wheat bran were good substrates for FTase production by A. oryzae CFR 202. Among the various corn products used, corn germ supported maximum FTase production, whereas among the by-products of coffee and tea processing used, spent coffee and spent tea were good substrates, with supplementation of yeast extract and complete synthetic media. FTase had maximum activity at 60°C and pH 6.0. FTase was stable up to 40°C and in the pH range 5.0–7.0. Maximum FOS production was obtained with FTase after 8 h of reaction with 60% sucrose. FTase produced by SSF using wheat bran was purified 107-fold by ammonium sulphate precipitation (30–80%), DEAE cellulose chromatography and Sephadex G-200 chromatography. The molecular mass of the purified FTase was 116.3 kDa by SDS-PAGE. This study indicates the potential for the use of agricultural by-products for the efficient production of FTase enzyme by A. oryzae CFR 202 in SSF, thereby resulting in value addition of those by-products.  相似文献   

12.
Bioconversion of corn straw by coupling ensiling and solid-state fermentation   总被引:13,自引:0,他引:13  
Yang X  Chen H  Gao H  Li Z 《Bioresource technology》2001,78(3):277-280
A two-stage process that combined solid-state fermentation (SSF) and ensiling was used for bioconversion of corn straw, in order to increase nutritional value and palatability for animal feed. SSF of corn straw increased the level of protein from 6.7% to 14.7% and decreased the cellulose by 38.0% and hemicellulose by 21.2%. Cellulase and xylanase were produced during SSF. After SSF, the fermented substrate was directly ensiled by inoculating with lactic acid bacteria (LAB). In situ produced enzymes and bacterial inoculation resulted in a rapid drop in pH, a high level of lactic acid production, partial degradation of cell wall components and generation of reducing sugars (RSs). Efficiency of ensiling at 25 degrees C, 30 degrees C, 35 degrees C, 40 degrees C was evaluated. Temperature influenced the effect of ensiling; the higher the temperature, the shorter the ensiling period. The combined fermentation upgraded the nutritional value, enhanced the efficiency of ensiling and reduced bioprocessing costs.  相似文献   

13.
为了筛选具有高效分解玉米秸秆纤维素能力的菌株,采集玉米秸秆还田土样作为样品,并于20℃条件下进行富集培养。利用以玉米秸秆纤维素为唯一碳源的固体分离培养基和刚果红染色法进行初筛,再将筛选到的菌株进行液体发酵培养并取上清液测定酶活,最终获得1株产纤维素酶能力较强的真菌SY-403。结合形态学特征与分子生物学鉴定结果得知,菌株SY-403为蓝状菌属(Talaromyces stollii)。对其所产纤维素酶酶学性质进行初步研究,结果表明,该酶最适反应pH为6.0,最适反应温度为20℃。在模拟室外条件(15℃)下进行秸秆降解试验,玉米秸秆经菌株SY-403处理40 d时,秸秆失重率及纤维素分解率分别达到42.67%、55.26%。利用傅里叶变换红外(Fourier transform infrared,FTIR)光谱技术对降解过程中官能团的变化进行分析,结果表明,纤维素相关谱峰(1 052~1 054 cm-1)相对强度减弱,而羟基相关谱峰(1 328~1 330 cm-1)相对强度增强,这说明纤维素已被分解为可利用的短链结构,即菌株SY-403可用于降解玉米秸秆。  相似文献   

14.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

15.
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.  相似文献   

16.
The conditions of the filter paper activity (FPA) assay were standardized for solid substrate fermentation (SSF). The FPA is a relative measure of the overall cellulose hydrolysing capacity of microbial cellulase preparations, thus reliable and comparable data may be obtained only under standardized conditions. The standardization developed for submerged fermentation (SF) cannot be translated directly to SSF. In SSF, the FPA is strongly dependent on the extraction volume and on the dilution of the enzyme in the assay. The optimal extraction volume was substrate dependent in SSF of corn fiber, spent brewing grains and wheat straw for cellulase production by Trichoderma reesei Rut C30. Other cellulolytic enzyme assays (endoglucanase, beta-glucosidase and xylanase) were much less sensitive to the extraction volume.  相似文献   

17.
利用一株分离自传统发酵酸马奶中的益生干酪乳杆菌(Lactobacillus casei Zhang)进行固态发酵(Solid State Fermentation,SSF)。以发酵物中的活菌数为主要指标,采用九因素四水平(L32(4^9))的正交试验优化固态发酵培养基,并在优化的培养基基础上研究不同的初始含水量及培养时间对Lactobacillus casei Zhang活菌数的影响。实验结果表明,在固态发酵培养基组成为4g豆粕、5g麸皮、0.6g乳清粉、0.3g葡萄糖、0.3g碳酸钙、0.02g硫酸铵、0.01g硫酸镁,初始含水量为55%的优化条件下,37℃发酵60h,发酵物中Lactobacillus casei Zhang活菌数可达到4.08×10^10CFU/g。  相似文献   

18.
以玉米秸秆为原料同步糖化发酵生产燃料乙醇   总被引:1,自引:0,他引:1  
以玉米秸秆为原料,经酸法预处理后,采用同步糖化发酵SSF工艺生产燃料乙醇。正交试验获得的最佳体系为:培养温度34℃、发酵pH值5.5、发酵的液固比8:1、当发酵108h后,乙醇浓度可达8.33g/L。该实验为纤维质燃料乙醇的产业化生产提供技术依据。  相似文献   

19.
Polylactides produced from renewable feedstocks, such as corn starch, are being developed as alternatives to plastics derived from petroleum. In addition to corn, other less expensive biomass resources can be readily converted to component sugars (glucose, xylose, etc.) by enzyme and/or chemical treatment for fermentation to optically pure lactic acid to reduce the cost of lactic acid. Lactic acid bacteria used by the industry lack the ability to ferment pentoses (hemicellulose-derived xylose and arabinose), and their growth and fermentation optima also differ from the optimal conditions for the activity of fungal cellulases required for depolymerization of cellulose. To reduce the overall cost of simultaneous saccharification and fermentation (SSF) of cellulose, we have isolated bacterial biocatalysts that can grow and ferment all sugars in the biomass at conditions that are also optimal for fungal cellulases. SSF of Solka Floc cellulose by one such isolate, Bacillus sp. strain 36D1, yielded l(+)-lactic acid at an optical purity higher than 95% with cellulase (Spezyme CE; Genencor International) added at about 10 FPU/g cellulose, with a product yield of about 90% of the expected maximum. Volumetric productivity of SSF to lactic acid was optimal between culture pH values of 4.5 and 5.5 at 50 degrees C. At a constant pH of 5.0, volumetric productivity of lactic acid was maximal at 55 degrees C. Strain 36D1 also co-fermented cellulose-derived glucose and sugar cane bagasse hemicellulose-derived xylose simultaneously (SSCF). In a batch SSCF of 40% acid-treated hemicellulose hydrolysate (over-limed) and 20 g/L Solka Floc cellulose, strain 36D1 produced about 35 g/L lactic acid in about 144 h with 15 FPU of Spezyme CE/g cellulose. The maximum volumetric productivity of lactic acid in this SSCF was 6.7 mmol/L (h). Cellulose-derived lactic acid contributed to about 30% of this total lactic acid. These results show that Bacillus sp. strain 36D1 is well-suited for simultaneous saccharification and co-fermentation of all of the biomass-derived sugars to lactic acid.  相似文献   

20.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号