首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
表遗传学推动新一轮遗传学的发展   总被引:2,自引:0,他引:2  
薛开先 《遗传》2005,27(1):155-159
科学的发展孕育着突破,表遗传学研究推动着新一轮的遗传学的发展。表遗传学是研究没有DNA序列变化的、可遗传的表达改变。表遗传学不仅对医学和农业有重要的实践意义,而且还提供了理解遗传和进化的新观点。研究表明,人类基因组含有两类遗传信息,遗传学信息提供了合成生命所必需蛋白质的模板,而表遗传学信息提供了何时、何地和怎样地应用遗传学信息的指令;遗传学和表遗传学的关系有如“阴阳”,它们既相区别又协同参与调节生命活动。同时还讨论了基因的概念、进化和epigenetics的中文译名等问题。表遗传学研究应引起国内学术界的关注。Abstract: Scientific development is pregnant with a breakthrough, epigenetic studies are pushing the genetics forward. Epigenetics is the study of heritable changes in gene expression that occurs without a change in DNA sequence. Epigenetics not only has practical significance for medicine and agriculture, but also provides new views on understanding heredity and evolution. Human genome contains information in two forms: the genetic information provides the blueprint for the manufacture of all the proteins necessary to create a living thing while the epigenetic information provides instructions on how, where, and when the genetic information should be used. The interrelationship of genetics and epigenetics is like a yin-yan, they are different from each other, and cooperatively take part in regulation of a variety of living activities. In this paper concept of gene and problems of evolution has been also discussed according to epigenetic viewpoints.  相似文献   

2.
Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication.Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance.Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.  相似文献   

3.
The first intron of rice EPSP synthase enhances expression of foreign gene   总被引:5,自引:0,他引:5  
Translatable exon sequences in pre-mRNA often are separated by non-coding introns in eu-karyotic genomes. The removal of non-coding introns from pre-mRNA and the splicing together of translatable exons sequence is an essential requirement of gene expression. DNA size of introns in a gene is 5—10 times larger than that of exon, which can store more information and is helpful for a gene during evolution[1]. In many experiments on gene expression, it is indispensable for a gene to be expresse…  相似文献   

4.
Alu家族及其生物学意义   总被引:2,自引:0,他引:2  
罗迪贤  李凯  何淑雅  廖端芳 《遗传》2005,27(2):284-288
  相似文献   

5.
The downstream gene controlled by promoter--PTH4 which is related to Streptomycesdifferentiation was cloned, and its sequence was determined by the dideoxy chain termination method. The results indicated that the 1597 bp of DNA fragment conferred a complete open reading frame (ORF). In searches of databases, the deduced product of the ORF was not homologous with any known proteins; it may be a new protein. The function of the gene was studied using the strategy of gene disruption; the actinorhodin could not be produced when this gene was disrupted. Therefore, this gene may be related to actinorhodin biosynthesis in Streptomyces coelicolor, and the result also shows that this gene may play a role in multiple level regulation of differentiation genes in Streptomyces.  相似文献   

6.
7.
袁晓东  李国印  汤敏谦 《遗传》2002,24(3):320-324
人类基因组计划(Human Genome Project)的实施揭开了各种生物基因组解析的序幕[1~3]。随着各种生物的基因组解析的顺利进行,遗传基因的功能研究以及寻找新的功能基因变得越来越重要。本文介绍的MegacloneTM技术、MegasortTM技术[4]以及MPSS技术[5]可以高效地分离解析各种功能基因。 Abstract:The implementation of the Human Genome Project preludes the analyzing of biologic genomes[1~3].Following the successful analysis of diverse biologic genomes,it becomes more and more important to research the functions of genes and to find new functional genes.In this article,we use the techniques of MegacloneTM,MegasortTM[4] and MPSS[5] to sort and sequence effectively different functional genes.  相似文献   

8.
The recent genome sequencing of Populus trichocarpa and Vitis vinifera, two models of woody plants, of Sorghum bicolor, a model of monocot using C4 metabolism, and of the moss Physcomitrella patens, together with the availability of photosynthetic organism genomes allows performance of a comparative genomic study with organisms having different ways of life, reproduction modes, biological traits, and physiologies. Thioredoxins (Trxs) are small ubiq- uitous proteins involved in the reduction of disulfide bridges in a variety of target enzymes present in all sub-cellular compartments and involved in many biochemical reactions. The genes coding for these enzymes have been identified in these newly sequenced genomes and annotated. The gene content, organization and distribution were compared to other photosynthetic organisms, leading to a refined classification. This analysis revealed that higher plants and bryo- phytes have a more complex family compared to algae and cyanobacteria and to non-photosynthetic organisms, since poplar exhibits 49 genes coding for typical and atypical thioredoxins and thioredoxin reductases, namely one-third more than monocots such as Oryza sativa and S. bicolor. The higher number of Trxs in poplar is partially explained by gene duplication in the Trx m, h, and nucleoredoxin classes. Particular attention was paid to poplar genes with emphasis on Trx-like classes called Clot, thioredoxin-like, thioredoxins of the lilium type and nucleoredoxins, which were not described in depth in previous genomic studies.  相似文献   

9.
Predicting protein-coding genes still remains a significant challenge. Although a variety of computational programs that use commonly machine learning methods have emerged, the accuracy of predictions remains a low level when implementing in large genomic sequences. Moreover, computational gene finding in newly se- quenced genomes is especially a difficult task due to the absence of a training set of abundant validated genes. Here we present a new gene-finding program, SCGPred, to improve the accuracy of prediction by combining multiple sources of evidence. SCGPred can perform both supervised method in previously well-studied genomes and unsupervised one in novel genomes. By testing with datasets composed of large DNA sequences from human and a novel genome of Ustilago maydi, SCGPred gains a significant improvement in comparison to the popular ab initio gene predictors. We also demonstrate that SCGPred can significantly improve prediction in novel genomes by combining several foreign gene finders with similarity alignments, which is superior to other unsupervised methods. Therefore, SCGPred can serve as an alternative gene-finding tool for newly sequenced eukaryotic genomes. The program is freely available at http://bio.scu.edu.cn/SCGPred/.  相似文献   

10.
11.
GRIMM: genome rearrangements web server   总被引:14,自引:0,他引:14  
SUMMARY: Genome Rearrangements In Man and Mouse (GRIMM) is a tool for analyzing rearrangements of gene orders in pairs of unichromosomal and multichromosomal genomes, with either signed or unsigned gene data. Although there are several programs for analyzing rearrangements in unichromosomal genomes, this is the first to analyze rearrangements in multichromosomal genomes. GRIMM also provides a new algorithm for analyzing comparative maps for which gene directions are unknown. AVAILABILITY: A web server, with instructions and sample data, is available at http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM.  相似文献   

12.
The accurate prediction of higher eukaryotic gene structures and regulatory elements directly from genomic sequences is an important early step in the understanding of newly assembled contigs and finished genomes. As more new genomes are sequenced, comparative approaches are becoming increasingly practical and valuable for predicting genes and regulatory elements. We demonstrate the effectiveness of a comparative method called pattern filtering; it utilizes synteny between two or more genomic segments for the annotation of genomic sequences. Pattern filtering optimally detects the signatures of conserved functional elements despite the stochastic noise inherent in evolutionary processes, allowing more accurate annotation of gene models. We anticipate that pattern filtering will facilitate sequence annotation and the discovery of new functional elements by the genetics and genomics communities.  相似文献   

13.
昆虫比较线粒体基因组学研究进展   总被引:5,自引:1,他引:4  
魏书军  陈学新 《昆虫知识》2011,48(6):1573-1585
动物线粒体基因组因其基因组成稳定、基因排列相对保守、普遍为母系遗传、极少发生重组等而被广泛应用于进化与系统发育等研究。目前,昆虫中已有356个线粒体基因组序列被测定,代表了33个目中的28个目。大量比较基因组学研究使得我们对昆虫线粒体基因组的特征与进化方式有了较为清晰的认识。本文对昆虫线粒体基因组的测序进展、基因组的结构特征、碱基组成、控制区的特征、基因重排及其机理、进化速率及其在昆虫系统发育研究中的应用等方面的研究进展进行介绍。  相似文献   

14.
Data from completely sequenced genomes are likely to open the way for novel studies of the genetics of nonmodel organisms, in particular when it comes to the identification and analysis of genes responsible for traits that are under selection in natural populations. Here we use the draft sequence of the chicken genome as a starting point for linkage mapping in a wild bird species, the collared flycatcher - one of the most well-studied avian species in ecological and evolutionary research. A pedigree of 365 flycatchers was established and genotyped for single nucleotide polymorphisms in 23 genes selected from (and spread over most of) the chicken Z chromosome. All genes were also found to be located on the Z chromosome in the collared flycatcher, confirming conserved synteny at the level of gene content across distantly related avian lineages. This high degree of conservation mimics the situation seen for the mammalian X chromosome and may thus be a general feature in sex chromosome evolution, irrespective of whether there is male or female heterogamety. Alternatively, such unprecedented chromosomal conservation may be characteristic of most chromosomes in avian genome evolution. However, several internal rearrangements were observed, meaning that the transfer of map information from chicken to nonmodel bird species cannot always assume conserved gene orders. Interestingly, the rate of recombination on the Z chromosome of collared flycatchers was only approximately 50% that of chicken, challenging the widely held view that birds generally have high recombination rates.  相似文献   

15.
In this study, we sequenced four new mitochondrial genomes and presented comparative mitogenomic analyses of five species in the genus Peirates (Hemiptera: Reduviidae). Mitochondrial genomes of these five assassin bugs had a typical set of 37 genes and retained the ancestral gene arrangement of insects. The A+T content, AT- and GC-skews were similar to the common base composition biases of insect mtDNA. Genomic size ranges from 15,702 bp to 16,314 bp and most of the size variation was due to length and copy number of the repeat unit in the putative control region. All of the control region sequences included large tandem repeats present in two or more copies. Our result revealed similarity in mitochondrial genomes of P. atromaculatus, P. fulvescens and P. turpis, as well as the highly conserved genomic-level characteristics of these three species, e.g., the same start and stop codons of protein-coding genes, conserved secondary structure of tRNAs, identical location and length of non-coding and overlapping regions, and conservation of structural elements and tandem repeat unit in control region. Phylogenetic analyses also supported a close relationship between P. atromaculatus, P. fulvescens and P. turpis, which might be recently diverged species. The present study indicates that mitochondrial genome has important implications on phylogenetics, population genetics and speciation in the genus Peirates.  相似文献   

16.
Comparative genomics is a powerful tool to transfer knowledge coming from model fish species to non-model fish species of economic or/and evolutionary interest. Such transfer is of importance as functional studies either are difficult to perform with most non-model species. The first comparative map constructed using the human and the chimpanzee genome allowed the identification of putative orthologues. Although comparative mapping in teleosts is still in its infancy, five model teleost genomes from different orders have been fully sequenced to date and the sequencing of several commercially important species are also underway or near completion. The accessibility of these whole genome sequences and rapid developments in genomics of fish species are paving the way towards new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of non-model, but economically, physiologically or evolutionary important species is now feasible. Furthermore, comparison of low coverage gene maps of non-model fish species against fully sequenced fish species will enhance the efficiency of candidate gene identification projected for quantitative trait loci (QTL) scans for traits of special interest.  相似文献   

17.
玉米比较基因组学研究进展   总被引:4,自引:0,他引:4  
玉米是世界上重要的粮食作物 ,长期以来一直是遗传学、分子生物学和基因组学研究的重点对象。近十多年来 ,涉及到玉米的基因组学研究取得了很大进展。不仅在利用比较遗传作图方法方面发现玉米和其它植物 (尤其是禾谷类作物 )的基因组存在广泛的共线性 ,在较小的DNA区域上也发现存在微共线性。尽管还存在一些共线性的例外情形 ,进一步的比较基因组学研究将深入阐明玉米基因组的结构和进化 ,并把这些研究成果应用于基因发掘中。  相似文献   

18.
19.
20.
Human and sheep chromosome-specific probes were used to construct comparative painting maps between the pig (Suiformes), cattle and sheep (Bovidae), and humans. Various yet unknown translocations were observed that would assist in a more complete reconstruction of homology maps of these species. The number of homologous segments that can be identified with sheep probes in the pig karyotype exceeds that described previously by chromosome painting between two non-primate mammals belonging to the same order. Sheep probes painted 62 segments on pig autosomes and delineated not only translocations, but also 9 inversions. All inversions were paracentric and indicate that these rearrangements may be characteristic for chromosomal changes in suiforms. Hybridizations of all sheep painting probes to cattle chromosomes confirmed the chromosome conservation in bovids. In addition, we observed a small translocation that was previously postulated from linkage mapping data, but was not yet described by physical mapping. The chromosome painting data are complemented with a map of available comparative gene mapping data between pig and sheep genomes. A detailed table listing the comparative gene mapping data between pig and cattle genomes is provided. The reanalysis of the pig karyotype with a new generation of human paint probes provides an update of the human/pig comparative genome map and demonstrates two new chromosome homologies. Seven conserved segments not yet identified by chromosome painting are also reported. Received: 2 October 2000 / Accepted: 15 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号