首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Vertebrate genomes are characterized with CpG deficiency, particularly for GCpoor regions. The GC content-related CpG deficiency is probably caused by context-dependent deamination of methylated CpG sites. This hypothesis was examined in this study by comparing nucleotide frequencies at CpG flanking positions among invertebrate and vertebrate genomes. The finding is a transition of nucleotide preference of 5' T to 5' A at the invertebrate-vertebrate boundary, indicating that a large number of CpG sites with 5' Ts were depleted because of global DNA methylation developed in vertebrates. At genome level, we investigated CpG observed/expected (obs/exp) values in 500 bp fragments, and found that higher CpG obs/exp value is shown in GC-poor regions of invertebrate genomes (except sea urchin) but in GC-rich sequences of vertebrate genomes. We next compared GC content at CpG flanking positions with genomic average, showing that the GC content is lower than the average in invertebrate genomes, but higher than that in vertebrate genomes. These results indicate that although 5' T and 5' A are different in inducing deamination of methylated CpG sites, GC content is even more important in affecting the deamination rate. In all the tests, the results of sea urchin are similar to vertebrates perhaps due to its fractional DNA methylation. CpG deficiency is therefore suggested to be mainly a result of high mutation rates of methylated CpG sites in GC-poor regions.  相似文献   

2.
3.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

4.
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.  相似文献   

5.
MTTEs (Miniature inverted-repeat transposabie elements) are reminiscence ot non-autonomous DNA (class Ⅱ) elements, which are distinguished from other transposable elements by their small size, short terminal inverted repeats (TIRs), high copy numbers, genie preference, and DNA sequence identity among family members. Although MITEs were first discovered in plants and still actively reshaping genomes, they have been isolated from a wide range of eukaryotic organisms. MITEs can be divided into Tourist-like, Stowaway-like, and pogo-like groups, according to similarities of their TIRs and TSDs (target site duplications). In despite of several models to explain the origin and amplification of MITEs, their mechanisms of transposition and accumulation in eukaryotic genomes remain poorly understood owing to insufficient experimental data. The unique properties of MITEs have been exploited as useful genetic tools for plant genome analysis. Utilization of MITEs as effective and informative genomic markers and pot  相似文献   

6.
Progress in the Study of Molecular Genetic Improvements of Poplar in China   总被引:5,自引:0,他引:5  
The poplar is one of the most economically important and intensively studied tree species owing to its wide application in the timber industry and as a model material for the study of woody plants. The natural resource of poplars in China is replete. Over the past 10 years, the application of molecular biological techniques to genetic improvements in poplar species has been widely studied in China. Recent advances in molecular genetic improvements of poplar, including cDNA library construction, gene cloning and identification, genetic engineering, gene expression, genetic linkage map construction, mapping of quantitative trait loci (QTL) and molecular-assisted selection, are reviewed in the present paper. In addition, the application of modern biotechnology to molecular improvements in the genetic traits of the poplar and some unsolved problems are discussed.  相似文献   

7.
8.
9.
10.
The presence/absence variants (PAVs) are a major source of genome structural variation and have profound effects on phenotypic and genomic variation in animals and humans. However, little is understood about PAVs in plant genomes. Our previous resequencing effort on three sorghum (Sorghum bicolour L.) genomes, each 12? coverage, uncovered 5 364 PAVs. Here, we report a detailed characterization of 51 large-size (>30 kb) PAVs. These PAVs spanned a total size of 2.92 Mb of the sorghum genome containing 202 known and predicted genes, including 38 genes annotated to encode celldeath and stress response genes. The PAVs varied considerably for repeat sequences and mobile elements with DNA trans-posons as the major components. The frequency and distribution of these PAVs differed substantial y across 96 sorghum inbred lines, and the low-and high frequency PAVs differed in their gene categories. This report shed new light on the occurrence and diversity of PAVs in sorghum genomes. Our research exemplifies a new perspective to explore genome structural variation for genetic improvement in plant breeding.  相似文献   

11.
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.  相似文献   

12.
Alu elements have inserted in the human genome throughout primate evolution. A small number of Alu insertions have occurred after the divergence of humans from nonhuman primates and therefore should not be present in nonhuman primate genomes. Most of these recently integrated Alu elements are contained with a series of discrete Alu subfamilies that are related to each other based upon diagnostic nucleotide substitutions. We have extracted members of the Alu Yd subfamily that are derivatives of the Alu Y subfamily that share a common 12-bp deletion that defines the Yd lineage from the draft sequence of the human genome. Analysis of the Yd Alu elements resulted in the recovery of two new Alu subfamilies, Yd3 and Yd6, which contain a total of 295 members (198 Yd3 and 97 Yd6). DNA sequence analysis of each of the Alu Yd subfamilies yielded age estimates of 8.02 and 1.20 million years old for the Alu Yd3 and Yd6 subfamilies, respectively. Two hundred Alu Yd3 and Yd6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and associated levels of human genomic diversity. The Alu Yd3 subfamily appears to have started amplifying relatively early in primate evolution and continued propagating albeit at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Only two of the elements are polymorphic in the human genome and absent from the genomes of nonhuman primates. By contrast all of the members of the Alu Yd6 subfamily are restricted to the human genome, with 12% of the elements representing insertion polymorphisms in human populations. A single Alu Yd6 locus contained an independent parallel forward insertion of a paralogous Alu Sq sequence in the owl monkey. These Alu subfamilies are a source of genomic fossil relics for the study of primate phylogenetics and human population genetics.  相似文献   

13.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

14.
In primate genomes more than 40% of CpG islands are found within repetitive elements. With more than one million copies in the human genome, the Alu family of retrotransposons represents the most successful short interspersed element (SINE) in primates and CpG dinucleotides make up about 20% of Alu sequences. It is generally thought that CpG dinucleotides mutate approximately ten times faster than other dinucleotides due to cytosine methylation and the subsequent deamination and conversion of C-->T. However, the disparity of Alu subfamily age estimations based upon CpG or non-CpG substitution density indicates a more complex relationship between CpG and non-CpG substitutions within the Alu elements. Here we report an analysis of the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of approximately 6 for the young (AluY) and intermediate (AluS) Alu subfamilies. However, a more complex non-linear relationship between CpG and non-CpG substitutions was observed when old (AluJ) subfamilies were included in the analysis. These patterns may be the result of the slowdown of the neutral mutation rate during primate evolution and/or an increase in the CpG mutation rate as the consequence of increased DNA methylation in response to a burst of retrotransposition activity approximately 35 million years ago.  相似文献   

15.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

16.
Being the most effectively transposed primate-specific SINEs, Alu elements are present in more than one million copies in the human genome and include most recently transposed subsets of AluY elements that are polymorphic in humans. Although Alu elements are commonly thought to play an essential role in shaping and functioning of primate genomes, the understanding of the impact of recent Alu insertions on human gene expression is far from being comprehensive. Here we compared hnRNA contents for allele pairs of genes heterozygous for AluY insertions in their introns in human cell lines of various origins. We demonstrated that some AluY insertions correlated with decreased content of the corresponding hnRNAs. The effect observed does not depend on sequences of Alu elements and their orientation but is likely to be cell type specific.  相似文献   

17.
18.
Evolutionary impact of human Alu repetitive elements   总被引:11,自引:0,他引:11  
Early studies of human Alu retrotransposons focused on their origin, evolution and biological properties, but current focus is shifting toward the effect of Alu elements on evolution of the human genome. Recent analyses indicate that numerous factors have affected the chromosomal distribution of Alu elements over time, including male-driven insertions, deletions and rapid CpG mutations after their retrotransposition. Unequal crossing over between Alu elements can lead to local mutations or to large segmental duplications responsible for genetic diseases and long-term evolutionary changes. Alu elements can also affect human (primate) evolution by introducing alternative splice sites in existing genes. Studying the Alu family in a human genomic context is likely to have general significance for our understanding of the evolutionary impact of other repetitive elements in diverse eukaryotic genomes.  相似文献   

19.
Recently integrated Alu elements and human genomic diversity   总被引:8,自引:0,他引:8  
A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. These newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity. Our screening of the Alu insertion loci also resulted in the recovery of several "young" Alu elements that resided at orthologous positions in nonhuman primate genomes. Sequence analysis demonstrated these "young" Alu insertions were the products of gene conversion events of older, preexisting Alu elements or independent parallel forward insertions of older Alu elements in the same short genomic region. The level of gene conversion between Alu elements suggests that it may have an influence on the single nucleotide polymorphism within Alu elements in the genome. We have also identified two genomic deletions associated with the retroposition and insertion of Alu Y lineage elements into the human genome. This type of Alu retroposition-mediated genomic deletion is a novel source of lineage-specific evolution within primate genomes.  相似文献   

20.
Summary There are several hundred thousand members of the Alu repeat family in the human genome. Those Alu elements sequenced to date appear to fit into subfamilies. A novel Alu has been found in an intron of the human CAD gene: it appears to be due to rearrangement between Alu repeats belonging to two different subfamilies. Further sequence data from this intron suggest that the Alu element may have rearranged prior to its entry into the CAD gene. Such findings indicate that, in addition to single nucleotide substitutions and deletions, DNA rearrangments may be a factor in generating the diversity of Alu repeats found in primate genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号