首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
陈建新  沈杰  宋敦伦  张龙  严毓骅 《昆虫学报》2000,43(-1):109-113
用东亚飞蝗Locusta migratoria manilensis作为活体寄主,将4龄蝗蝻接种蝗虫微孢子虫Nosema locustae后,对虫体总脂含量和血淋巴中的甘油脂含量、脂肪酶活力进行了测定,结果表明:蝗虫微孢子虫的寄生可导致东亚飞蝗虫体总脂含量和血淋巴甘油酯含量大幅度下降及血淋巴脂肪酶活力大幅度上升。根据病虫生理指标提出了一种新的病级鉴定方法。  相似文献   

2.
自桑兰叶甲分离出的一种微孢子虫(Mic-Ⅰ)的研究   总被引:2,自引:0,他引:2  
从广州郊区罗岗的桑园及菜地捕捉到的桑兰叶甲Mimastra cyanura Hope成虫体中分离到一种卵圆形的微孢子虫(简称Mic-Ⅰ)。孢子大小为(3.35±0.46)×(1.96±0.17) μm;孢子具单核、双核两种类型;极丝10~11圈;孢子表面抗原的血清学类型与家蚕微粒子虫Nosema bombycis孢子不同;在家蚕Bombyx mori体内以两种不同的生活史发育,发育过程符合变态孢虫属Vairimorpha微孢子虫发育特征。Mic-Ⅰ微孢子虫对家蚕具强病原性,对斜纹夜蛾Prodenia litura和小菜蛾Plutella xylostella也有感染能力。  相似文献   

3.
从广州郊区罗岗的桑园及菜地捕捉到的桑兰叶甲Mimastra cyanura Hope成虫体中分离到一种卵圆形的微孢子虫(简称Mic-Ⅰ)。孢子大小为(3.35±0.46)×(1.96±0.17) μm;孢子具单核、双核两种类型;极丝10~11圈;孢子表面抗原的血清学类型与家蚕微粒子虫Nosema bombycis孢子不同;在家蚕Bombyx mori体内以两种不同的生活史发育,发育过程符合变态孢虫属Vairimorpha微孢子虫发育特征。Mic-Ⅰ微孢子虫对家蚕具强病原性,对斜纹夜蛾Prodenia litura和小菜蛾Plutella xylostella也有感染能力。  相似文献   

4.
棉铃虫幼虫感染棉铃虫微孢子虫后的组织病理变化   总被引:3,自引:0,他引:3  
1997年田间调查时发现一种寄生于棉铃虫Helicoverpa armigera(Hübner)的微孢子虫Nosema sp.,它对棉铃虫有较强的致病力并可经卵垂直传播。利用透射电镜对棉铃虫幼虫感染该微孢子虫后的组织病理变化进行了初步观察。结果表明:该微孢子虫可侵染棉铃虫的中肠、马氏管、脂肪体、神经等组织;侵染后可导致寄主中肠的微绒毛脱落,线粒体内脊排列方向发生变化,线粒体整体发生变形并最终瓦解;内质网发生断裂;细胞核体积变小并变形,但该微孢子虫并不入侵细胞核;马氏管膨大,边缘向外突出隆起;神经细胞的细胞核变成长条形,细胞界线模糊;在神经细胞内也发现了微孢子虫孢子,证明该微孢子虫也入侵寄主神经细胞。  相似文献   

5.
东方蜜蜂微孢子虫Nosema ceranae侵染成年蜜蜂导致蜜蜂微孢子虫病。本研究旨在验证东方蜜蜂微孢子虫nce-miR-12220的存在和表达,并检测nce-miR-12220及其靶基因在病原侵染意大利蜜蜂Apis mellifera ligustica (简称意蜂)工蜂过程的表达谱。Stem-loop RT-PCR和Sanger测序结果显示nce-miR-12220真实存在和表达。靶向预测结果显示nce-miR-12220共靶向KRAB-Aγ tubulin等15个基因。上述靶基因可注释到19个GO条目和3条KEGG通路。RT-qPCR结果显示,相较于接种后1 d (1 day post infection,1 dpi),nce-miR-12220在2 dpi上调表达,而在3-12 dpi阶段总体表现出显著下调表达的趋势。类似地,与1 dpi相比,靶基因KRAB-A在2 dpi上调表达,而在3-12 dpi阶段总体呈下调表达的趋势。另外,与1 dpi相比,靶基因γ tubulin在2-12 dpi阶段总体表现出显著下调表达的趋势。上述结果表明nce-miR-12220与KRAB-Aγ tubulin之间存在潜在的靶向结合和正向调控关系;东方蜜蜂微孢子虫通过下调表达nce-miR-12220抑制KRAB-A的表达进而促进增殖;意蜂工蜂可能通过抑制东方蜜蜂微孢子虫的γ tubulin表达抵御病原侵染。研究结果明确了nce-miR-12220及其靶基因KRAB-Aγ tubulin在东方蜜蜂微孢子虫侵染意蜂工蜂过程中的动态表达规律,为深入探究nce-miR-12220在病原侵染中的功能及调控机制提供了理论和实验依据。  相似文献   

6.
小菜蛾血淋巴蛋白质双向电泳技术体系的建立及优化   总被引:1,自引:0,他引:1  
采用不同方法对小菜蛾Plutella xylostella(L.)血淋巴进行双向电泳研究,建立了一套适用于小菜蛾血淋巴蛋白质组分析的双向电泳体系。从样品处理方案、等电聚焦时间、染色方法等因素对小菜蛾双向电泳结果的影响进行了分析和优化。结果表明,TCA/丙酮沉淀法提取蛋白损失少,图谱均匀清晰,分辨率和重复性更高。不同长度胶条的最佳上样量不同,胶条长度为7、17、24cm时,最佳上样量依次为20~50μg、50~300μg、100~500μg,而聚焦时间则分别以24000、50000、65000vhr为宜。第二向聚丙烯酰胺凝胶的浓度以12%为宜,电泳后蛋白点呈均匀分布。银染的灵敏度明显高于考马斯亮蓝染色,可以检测出更多的蛋白点,但考马斯亮蓝染色在后续蛋白点质谱鉴定中具有优势。  相似文献   

7.
【目的】本研究旨在阐明家蚕微孢子虫Nosema bombycis感染不同时间对家蚕Bombyx mori幼虫不同组织中家蚕海龟蛋白(Bombyx Turtle, Bmtutl)基因表达水平的影响,为揭示家蚕微孢子虫的侵染机制奠定基础。【方法】利用生物信息学方法对家蚕海龟蛋白3种亚型Bmtutl-464, Bmtutl-519和Bmtutl-810的序列结构特征进行了分析;利用qPCR检测家蚕微孢子虫感染后12, 24, 48, 72, 96和120 h,家蚕幼虫中肠、血淋巴与脂肪体组织中Bmtutl-464, Bmtutl-519和Bmtutl-810基因表达水平的变化情况。【结果】家蚕海龟蛋白3种亚型的二级结构均主要由无规则卷曲、α螺旋、β转角和延伸链组成,其中无规则卷曲所占比例最高。但是PredictProtein分析发现,Bmtutl-464, Bmtutl-519和Bmtutl-810之间的蛋白/多核苷酸结合位点存在较大差异。qPCR结果表明,感染家蚕微孢子虫后,家蚕幼虫中肠、血淋巴与脂肪体组织中Bmtutl-464, Bmtutl-519和Bmtutl-810基因的整体表达处于被抑制状态,尤其在脂肪体中最为明显:Bmtutl-519和Bmtutl-810基因的表达在家蚕微孢子虫感染家蚕后的72 h开始受到显著抑制,特别是Bmtutl-519基因,其相对表达水平均不到对照的5.0%。【结论】家蚕海龟蛋白这3种亚型的序列结构特征存在较大差异,家蚕微孢子虫感染在一定程度抑制了家蚕幼虫中肠、血淋巴与脂肪体组织中Bmtutl-464, Bmtutl-519和Bmtutl-810基因尤其是Bmtutl-519的表达。结果说明,与其他两种家蚕海龟蛋白亚型相比,Bmtutl-519蛋白可能在家蚕微孢子虫侵染宿主的过程中起主要作用。  相似文献   

8.
在采用蝗虫微孢子虫Nosema locustae防治过的草场中进行抽样调查,研究了草原蝗虫优势种类、混合种群平均密度与蝗虫微孢子虫疾病分布之关系,以及该疾病的空间分布。在防治后的当年,蝗虫微孢子虫疾病的感染率随着混合种群平均密度及靶标蝗虫亚洲小车蝗Oedaleus asiaticus的感病率的下降而降低。但是,次靶标蝗虫如宽须蚁蝗Myrmeleotettixpalpalis(一种中后期发生的种类)其感病率呈上升趋势,表明该疾病可在不同发生期种类蝗虫之间进行有效地传播。病蝗虫在防治后第7d其空间分布呈随机分布(Poisson),第28d 则是聚集分布,第40d时也呈聚集分布。于1993年、1994年对1988年(样区Ⅱ)、1989 年(样区Ⅲ)采用微孢子虫防治过的草场进行抽样调查。结果表明,在二个样区中,二年混合种群平均虫口密度与混合种群的平均感病率呈正相关(相关系数分别为r=0.289, r=0.479)。蝗虫微孢子虫病在主要优势种,如亚洲小车蝗、宽须蚁蝗、白边痂蝗Bryode maluctuosumluctuosum、皱膝蝗Angaracris /I>spp.、毛足棒角蝗Dasyhippus barbipes均有分布。二个样区中的混合蝗虫种群的平均感病率在1994年显著低于1993年。混合蝗虫种群的种类组成也有所变化,与1993年相比,1994年宽须蚁蝗及白边痂蝗的比例上升较大,而亚洲小车蝗的比例下降。经过5—7年的扩散,蝗虫微孢子虫病至少可扩散距防治区1 000m,其扩散方向可能与风及地势等有关。  相似文献   

9.
【背景】东方蜜蜂微孢子虫(Nosema ceranae)专性侵染成年蜜蜂中肠上皮细胞而导致的微孢子虫病给养蜂业造成严重损失。【目的】检测东方蜜蜂微孢子虫nce-miR-23928及其靶基因在侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为深入探究nce-miR-23928在东方蜜蜂微孢子虫侵染中的功能及调控机制提供依据。【方法】通过RNAhybrid、miRanda和TargetScan软件预测nce-miR-23928的靶基因。使用BLAST工具将上述靶基因比对到基因本体论(geneontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)、Nr和Swiss-Prot数据库以获得相应注释。采用实时荧光定量PCR(realtimequantitativePCR,RT-qPCR)技术检测nce-miR-23928及其靶基因在东方蜜蜂微孢子虫侵染意蜂工蜂过程中的相对表达量。【结果】相较于接种后1 d (1 day post infection, 1 dpi),nce-...  相似文献   

10.
转基因抗虫棉对棉铃虫及其内寄生蜂的双重效应   总被引:11,自引:6,他引:5  
以含1%转基因(Cry1A+CpTI)抗虫棉“中抗310”棉叶粉的人工饲料为基础,建立一套抗虫棉 棉铃虫Helicoverpa armigera 棉铃虫幼虫内寄生蜂中红侧沟茧蜂Microplitis mediator和棉铃虫齿唇姬蜂Campoletis chlorideae的三级营养关系的研究系统,研究了转基因抗虫棉对棉铃虫及内寄生蜂的双重效应,分析比较了6种状态的棉铃虫生长发育动态,以及寄生蜂的生长状况。结果表明,无论是否被寄生,抗虫棉对棉铃虫生长发育的抑制作用都非常显著;寄生取食抗虫棉饲料的棉铃虫的寄生蜂,其出茧率和茧重都显著下降,对于中红侧沟茧蜂,出茧率和茧重分别下降了26.1%和1.0 mg;对于棉铃虫齿唇姬蜂,分别下降了17.9%和5.1 mg。解剖寄主发现,两种寄生蜂在取食抗虫棉饲料的寄主体内发育缓慢并出现部分畸形幼蜂。棉铃虫幼虫血淋巴总蛋白含量和血淋巴蛋白SDS-PAGE电泳分析表明,取食抗虫棉饲料后,棉铃虫血淋巴总蛋白含量低于相应的对照,推测寄主血淋巴蛋白含量降低是导致寄生蜂生长缓慢、发育不正常的一个重要原因。  相似文献   

11.
In experiments on the infection of bee larvae with Nosema apis , the parasitic spores did not germinate and infected adults did not result. In hives of bees infected with N. apis about 10–20% of the eggs laid did not complete their development probably because of inadequate care and feeding.  相似文献   

12.
Newly emerged adult bees were fed with Nosema apis spores subjected to various treatments, and their longevity, proportions of bees infected, and spores per bee recorded. Spores lost viability after 1, 3, or 6 months in active manuka or multifloral honey, after 3 days in multifloral honey, and after 21 days in water or sugar syrup at 33 degrees C. Air-dried spores lost viability after 3 or 5 days at 40 degrees, 45 degrees, or 49 degrees C. Increasing numbers of bees became infected with increasing doses of spores, regardless of their subsequent food (active manuka honey, thyme honey, or sugar syrup). Final spore loads were similar among bees receiving the same food, regardless of dose. Bees fed with either honey had lighter infections than those fed with syrup, but this may have been due to reductions in their longevity. Bees fed with manuka honey were significantly shorter lived, whether infected or not.  相似文献   

13.
The proportion of honey-bees infected with Nosema apis (Zander) declines in summer as the old infected bees die, for they cease to transmit their infection to the newly emerged individuals during the flying season. N. apis spores survive the summer on combs contaminated with infected faeces during the preceding winter. Although bees clean the combs during the summer, all infected material is not removed, and even well-used brood comb, which has been repeatedly cleaned by bees, can carry infection. Only a few bees may contract infection in the autumn from these faeces, but they join the winter cluster and initiate the next outbreak of the disease. Transferring a colony on to clean comb early in the spring or summer removes the source of the disease, and it then disappears when all the old infected bees die.
Old broodless comb can be sterilized quite simply by fumigation for a few days with the vapours of formalin or glacial acetic acid. Acetic acid is preferable, because it does not poison any honey or pollen in the combs. Formaldehyde can safely be used only with empty combs.
The autumn is the best time for treating colonies chemotherapeutically, because the combs are then cleanest and the few bees which are infected can be cured during the winter. The drug can be incorporated in the syrup normally fed to colonies in autumn, and there is no risk of seriously contaminating subsequent honey crops. However, such treatment cannot eliminate the disease because sufficient spores remain on the combs for the disease to start again when the drug supplied in the winter stores is exhausted.  相似文献   

14.
Infection of the adult worker honeybee with Nosema apis reduces or obviates brood feeding and causes her to commence foraging earlier than a healthy bee. The length of foraging activity and the total length of life of infected bees is reduced.
In colonies infected with N. apis the rate of brood rearing is severely depressed during April, May and June, the degree of depression being proportional to the percentage infection.
Infection decreases during July, August and September, and consequently the rate of brood rearing increases, but the resulting addition in foraging population is usually too late to increase the honey crop.  相似文献   

15.
The hypothesis that parasites and pathogens select for polyandry in eusocial Hymenoptera was tested, using the honey bee Apis mellifera and its microsporidian parasite Nosema apis. Five honey bee colonies with low and five with high worker genetic diversity were infected with N. apis spores. At 54-56 days after inoculation, parasite spores in the workers' midguts were counted to determine whether there was a greater variation of infection intensity (spore counts per worker) in high-diversity colonies than in low-diversity ones. In all colonies there were two discrete sets of workers, with few or many parasite spores. To compare the variations of infection intensity between two colony groups, coefficients of variation were calculated for all workers examined, and for the slightly infected and strongly infected workers. The percentages of slightly infected workers in the low- and high-diversity groups were also compared. None of the comparisons between low- and high-diversity colonies showed significant differences, therefore no relation was found between honey bee workers' genetic diversity and their infection with N. apis.  相似文献   

16.
The population of managed honey bees has been dramatically declining in the recent past in many regions of the world. Consensus now seems to be that pathogens and parasites (e.g. the ectoparasitic mite Varroa destructor, the microsporidium Nosema ceranae and viruses) play a major role in this demise. However, little is known about host-pathogen interactions for bee pathogens and attempts to develop novel strategies to combat bee diseases have been hampered by this gap in our knowledge. One reason for this dire situation is the complete lack of cell cultures for the propagation and study of bee pathogens. Here we present a cell culture model for two honey bee-pathogenic microsporidian species, Nosema apis and N. ceranae. Our cell culture system is based on a lepidopteran cell line, which proved to be susceptible to infection by both N. ceranae and N. apis and enabled us to illustrate the entire life cycle of these microsporidia. We observed hitherto undescribed spindle-shaped meronts and confirmed our findings in infected bees. Our cell culture model provides a previously unavailable means to explore the nature of interactions between the honey bee and its pathogen complex at a mechanistic level and will allow the development of novel treatment strategies.  相似文献   

17.
Nosemaceranae intensity (mean spores per bee) and prevalence (proportion of bees infected in a sample) were analyzed in honey bees of known ages. Sealed brood combs from five colonies were removed, emerging bees were marked with paint, released back into their colonies of origin, and collected as recently emerged (0-3 days old), as house bees (8-11 days old), and as foragers (22-25 days old). Fifty bees from each of the five colonies were processed individually at each collection date for the intensity and prevalence of N. ceranae infection. Using PCR and specific primers to differentiate Nosema species, N. ceranae was found to be the only species present during the experiment. At each collection age (recent emergence, house, forager) an additional sample from the inner hive cover (background bees=BG) of each colony was collected to compare the N. ceranae results of this sampling method, commonly used for Nosema spore quantification, to the samples comprised of marked bees of known ages. No recently emerged bees exhibited infection with N. ceranae. One house bee out of the 250 individuals analyzed (prevalence=0.4%) tested positive for N. ceranae, at an infection level of 3.35×10(6) spores. Infection levels were not statistically different between the recently emerged (mean=0 spores/bee) and house bees (mean=1.34×10(4) spores/bee) (P=0.99). Foragers exhibited the highest prevalence (8.3%) and infection intensity (mean=2.38×10(6) spores/bee), with a range of 0-8.72×10(7) spores in individual bees. The average infection level across all foragers was significantly higher than that of recently emerged bees (P=0.01) and house bees (P=0.01). Finally, the prevalence of Nosema in infected bees was found to be positively correlated with the infection intensity in the sample.  相似文献   

18.
Abstract. The distribution of coumaphos (the active component of perizin), fed to individual honeybees, in the honey stomach, haemolymph, midgut and rectum was studied over time. Concurrently, we investigated changes occurring in the haemolymph volume due to the ingestion of perizin, and we examined the influence of a Nosema apis infection on the survival of bees that had been fed perizin. The maximum amount of coumaphos in the haemolymph was found 4h after ingestion, but it was only 2–3% of the total amount recovered. After 15 min 55% of the total amount of the coumaphos recovered was in the honey stomach and available for distribution within the colony by trophallaxis, while 45% had already passed the proventriculus. Ultimately the coumaphos accumulated in the rectum. The volume of the haemolymph significantly increased in bees which were fed perizin compared with bees which were fed syrup and with non-fed bees. The lethal dose of coumaphos to 3-day-old bees was three times higher than the lethal dose for 18- and 1-day-old bees. The number of Nosema apis spores in the alimentary canal was not correlated with the survival of the bees that were fed perizin. It is concluded that coumaphos can act as a systemic agent and can be distributed to other individuals in a colony through trophallaxis, but these effects are limited to a maximum period of 12h after ingestion.  相似文献   

19.
Young workers of the honeybee Apis mellifera carnica were individually inoculated with Nosema apis spores subjected to carbon dioxide (CO(2)) treatment. The spores were kept in a CO(2) atmosphere for 30, 35 and 40 h. The course of the infection was evaluated on the basis of the survival rate of bee workers and the number of N. apis spores in their digestive tracts. CO(2) treatment of N. apis spores resulted in faster proliferation of the parasite as well as higher mortality among workers infected with spores kept in CO(2) for 30 and 35 h.  相似文献   

20.
Nosemosis is caused by intracellular parasites (Nosema apis and Nosema ceranae) that infect the midgut epithelial cells in adult honey bees. Recent studies relate N. ceranae to Colony Collapse Disorder and there is some suggestion that Nosema spp., especially N. ceranae, induces high mortality in honey bees, a fact that is considered as a serious threat for colony survival. 604 samples of adult honey bees for Nosema spp. analysis were collected from beekeeping colonies across Spain and were analysed using PCR with capillary electrophoresis. We also monitored 77 Andalusian apiaries for 2years; the sampled hives were standard healthy colonies, without any special disease symptoms. We found 100% presence of Nosema spp. in some locations, indicating that this parasite was widespread throughout the country. The two year monitoring indicated that 87% of the hives with Nosema spp. remained viable, with normal honey production and biological development during this period of time. The results of these trials indicated that both N. ceranae and N. apis could be present in these beehives without causing disease symptom and that there is no evidence for the replacement of N. apis by N. ceranae, supporting the hypothesis that nosemosis is not the main reason of the collapse and death of beehives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号