首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
较小鼠等啮齿类动物而言,猴和小型猪等大型实验动物在亲缘关系上与人类更为接近,在解剖、生理生化代谢及疾病发病机制等多方面与人类更接近,使它们在复制人类疾病模型,研究疾病发病机制和新药研发等中有无可替代的应用。而制备遗传工程大动物可以更深入地解析人类疾病,并可为器官移植和新药研发提供更充分的实验材料。基于慢病毒介导的转基因方法近几年已越来越多地被用来制备遗传工程猴和小型猪。与传统的原核显微注射方法和体细胞核移植法相比,慢病毒介导的转基因方法转基因效率高,操作更简单。因此,构筑基于慢病毒介导的转基因方法制备遗传工程猴和小型猪的技术平台将对生物医学研究产生巨大推动作用。  相似文献   

2.
3.
4.
动物转基因新技术研究进展   总被引:4,自引:1,他引:3  
孙振红  苗向阳  朱瑞良 《遗传》2010,32(6):539-547
动物转基因技术是21世纪发展最为迅速的生物高新技术之一, 它是指通过基因工程技术将外源基因整合到受体动物基因组中, 从而使其得以表达和遗传的生物技术。动物转基因的关键限制因素是转基因效率和基因表达的精确调控。目前有多种转基因技术, 每一种技术各有其优缺点, 仍然需要进一步研究。随着研究的深入, 转基因技术必将在探讨基因功能、动物遗传改良、生物反应器、动物疾病模型、器官移植等领域有广阔的应用前景。文章综述了近年发展的提高转基因效率的生殖干细胞法、提高转基因精确性的基因打靶法、RNA干扰(RNAi)介导的基因沉默技术和诱导多能干细胞(iPS)转基因技术。新的转基因技术为转基因动物的研究提供了更好的平台, 可以加快促进人类医药卫生、畜牧生产等领域的发展。  相似文献   

5.
转基因动物在microRNA研究中的应用   总被引:1,自引:0,他引:1  
MicroRNA是一类在转录后水平上调节基因表达的非编码小分子RNA,在生物体生理、病理等过程中发挥重要作用.MicroRNA功能的研究将是未来人们关注的焦点.通过转基因技术建立的多种动物模型在整体水平揭示了基因的功能.近年,以microRNA为研究对象的转基因动物模型数量不断增加,构建策略不断丰富.通过miRNA过表达、敲除及敲减等手段已揭示了miRNA在肿瘤、心血管系统疾病等多方面的作用.转基因动物正成为microRNA研究中不可或缺的工具.  相似文献   

6.
The birth of the first transgenic primate to have inherited a transgene from its parents opens the possibility to set up transgenic marmoset colonies, as these monkeys are small and relatively easy to keep and breed in research facilities. The prospect of transgenic marmoset models of human disease, readily available in the way that transgenic laboratory mice are currently, prompts excitement in the scientific community; but the idea of monkeys being bred to carry diseases is also contentious. We structure an ethical analysis of the transgenic marmoset case around three questions: whether it is acceptable to use animals as models of human disease; whether it is acceptable to genetically modify animals; and whether these animals’ being monkeys makes a difference. The analysis considers the prospect of transgenic marmoset studies coming to replace transgenic mouse studies and lesion studies in marmosets in some areas of research. The mainstream, broadly utilitarian view of animal research suggests that such a transition will not give rise to greater ethical problems than those presently faced. It can be argued that using marmosets rather than mice will not result in more animal suffering, and that the benefits of research will improve with a move to a species more similar in phylogenetic terms to humans. The biological and social proximity of monkeys and humans may also benefit the animals by making it easier for scientists and caretakers to recognize signs of suffering and increasing the human motivation to limit it. The animal welfare and research impacts of the transition to marmoset use will depend very much on the extent to which researchers take these issues seriously and seek to minimize animal harm and optimize human benefit.  相似文献   

7.
Animal transgenesis: recent data and perspectives   总被引:2,自引:0,他引:2  
Houdebine LM 《Biochimie》2002,84(11):1137-1141
Gene transfer to generate transgenic animals is used more and more to study gene regulation and function. It is also an essential tool to prepare pharmaceuticals or pig organs for transplantation to humans. It is also expected to be a potent way to generate farm animals having traits that cannot emerge by conventional selection. During the last few years, the different techniques to generate transgenic animals and obtain a well-controlled expression of the transgenes have been quite significantly improved. This paper is a brief summary of the most recent relevant data in this field.  相似文献   

8.
Lysozyme is a key antimicrobial component of human milk that has several health-promoting functions including the development of a healthy intestinal tract. However, levels of lysozyme in the milk of dairy animals are negligible. We have generated transgenic dairy goats that express human lysozyme (HLZ) in their milk in an attempt to deliver the benefits of human milk in a continual fashion. To test the feasibility of this transgenic approach to achieve a biological impact at the level of the intestine, feeding trials were conducted in two animal models. Pasteurized milk from HLZ transgenic animals was fed to both kid goats (ruminant model) and young pigs (human model), and the numbers of total coliforms and Escherichia coli present in the small intestine were determined. Data from this proof-of-principle study demonstrate that milk from transgenic animals was capable of modulating the bacterial population of the gut in both animal models. Pigs that consumed pasteurized milk from HLZ transgenic goats had fewer numbers of coliforms and E. coli in their intestine than did those receiving milk from non-transgenic control animals. The opposite effect was seen in goats. Milk from these transgenic animals not only represent one of the first transgenic food products with the potential of benefiting human health, but are also a unique model to study the development and role of intestinal microflora on health, well-being and resistance to disease.  相似文献   

9.
As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer's disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind that of mice. In recent years, the rat has been making a comeback as an Alzheimer's disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to the existing mouse models. This review summarizes the contributions and current status of the rat as an animal model of Alzheimer's disease.  相似文献   

10.
11.
Transgenic farm animals - A critical analysis   总被引:1,自引:0,他引:1  
Wall RJ  Seidel GE 《Theriogenology》1992,38(2):337-357
The notion of directly introducing new genes or otherwise manipulating the genotype of an animal is conceptually straightforward and appealing from the standpoints of both speed and precision with which phenotypic changes can be made. Thus, it is little wonder that the imagination of many animal scientists has been captivated by the success others have achieved in introducing foreign genes into mice. Transgenic mice not only exhibit unique phenotypes, but they also pass those traits on to their progeny. However, before transgenic farm animals become a common component of the livestock industry, a number of formidable obstacles must be overcome. In this review we attempt to identify the critical issues that should be considered by both those currently working in the field and those scientists considering the feasibility of initiating a transgenic livestock project. The inefficiency of producing transgenic animals has been well documented. This does not constrain investigators using laboratory animal models, but it has a major impact on applying transgenic technology to farm animals. The molecular mechanisms of transgene integration have not been elucidated, and as a consequence it is difficult to design strategies to improve the efficiency of the process. In addition to the problems associated with integration of new genes, there are inefficiencies associated with collecting and culturing fertilized eggs as well as embryo transfer in farm animals. Transgenic farm animal studies are major logistical undertakings. Even in the face of these practical hindrances, some may be pressured by administrators to embrace this new technology. As powerful as the transgenic animal model system is, currently there are limits to the kinds of agricultural questions that can be addressed. Some uses are so appealing, however, that several commercial organizations have explored this technology. Within the next decade or two, it is likely that many of the technical hurdles will be overcome. Combining new techniques with a better understanding of the genetic control of physiological systems will make it possible to improve the characteristics of farm animals in highly imaginative ways.  相似文献   

12.
In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice.  相似文献   

13.
制备动物乳腺生物反应器的问题和对策   总被引:4,自引:0,他引:4  
邓继先  林福玉 《生物技术通讯》2003,14(3):204-206,230
动物乳腺是理想的用于生产复杂的生物活性蛋白的生物反应器。目前,显微注射仍然是制备大型转基因动物的主要方法,但外源基因整合效率低下和位置效应还需要解决。要解决这两个问题,人们探索了几种策略。尽管使用转染的体细胞和基因打靶的体细胞作为核移植的供体的动物克隆技术还在改善中,但是这一技术是有应用前景的转基因牲畜的方法。在转基因载体中使用LCR和MAR序列可显著提高表达水平和转基因效率。YAC、BAC作为理想的转基因载体可能因为它们能容纳基因座的所有元件。虽然这些技术和方法还存在不完善之处,但其发展将极大地提高动物乳腺生物反应器的整合率和表达水平。  相似文献   

14.
Farm animals and their products have a longstanding and successful history of providing significant contributions to human nutrition, clothing, facilitation of labour, research, development and medicine and have thus been essential in improving life expectancy and human health. With the advent of transgenic technologies the potential of farm animals for improving human health is growing and many areas remain to be explored. Recent breakthroughs in reproductive technologies, such as somatic cloning and in vitro embryo production, and their merger with molecular genetic tools, will further advance progress in this field. Here, we have summarized the contribution of farm animals to human health, covering the production of antimicrobial peptides, dietary supplements or functional foods, animals used as disease models and the contribution of animals to solving urgent environmental problems and challenges in medicine such as the shortage of human cells, tissues and organs and therapeutic proteins. Some of these areas have already reached the level of preclinical testing or commercial application, others will be further advanced only when the genomes of the animals concerned have been sequenced and annotated. Provided the necessary precautions are being taken, the transmission of pathogens from animals to humans can be avoided to provide adequate security. Overall, the promising perspectives of farm animals and their products warrant further research and development in this field.  相似文献   

15.
Those pharmaceutical companies whose goal is to generate novel innovative drugs are faced with the challenge that only a fraction of the compounds tested in clinical trials eventually become a registered drug. This problem of attrition is compounded by the fact that the clinical trial or development stage is by far the most costly phase of bringing a new drug to market, consuming around 80 per cent of the total spend. Transgenic technology represents an attractive approach to reducing the attrition rate of compounds entering clinical trials by increasing the quality of the target and compound combinations making the transition from discovery into development. Transgenic technology can impact at many points in the discovery process, including target identification and target validation, and provides models designed to alert researchers early to potential problems with drug metabolism and toxicity, as well as providing better models for human diseases. In target identification, transgenic animals harbouring large DNA fragments can be used to narrow down genetic regions. Genetic studies often result in the identification of large genomic regions and one way to decrease the region size is to do complementation studies in transgenic animals using, for example, inserts from bacterial artificial chromosome (BAC) clones. In target validation, transgenic animals can be used for in vivo validation of a specific target. Considerable efforts are being made to establish new, rapid and robust tools with general utility for in vivo validation, but, so far, only transgenic animals work reliably on a wide range of targets. Transgenic animals can also be used to generate better disease models. Predictive animal models to test new compounds and targets will significantly speed up the drug discovery process and, more importantly, increase the quality of the compounds taken further in the research and development process. Humanised transgenic animals harbouring the human target molecule can be used to understand the effect of a compound acting on the human target in vivo. Also, models mimicking human drug metabolism will provide a means of assessing the effect of human-specific metabolites and of understanding the pharmacokinetic properties of potential drugs. In toxicology studies, transgenic animals are providing more predictive models. A good example of this are those models routinely used to look for carcinogenicity associated with new compounds.  相似文献   

16.
The techniques that are used to generate transgenic livestock are inefficient and expensive. This, coupled with the fact that most agriculturally relevant traits are complex and controlled by more than one gene, has restricted the use of transgenic technology. New methods for modifying the genome will underpin a resurgence of research using transgenic livestock. This will not only increase our understanding of basic biology in commercial species, but might also lead to the generation of animals that are more resistant to infectious disease.  相似文献   

17.
The application of transgenic research has proven to be a powerful and popular tool for investigating the contribution of specific genes known or suspected to be involved in the pathology of Alzheimer's disease. Many different experimental approaches have been pursued in an effort to mimic one or more of the numerous and diverse features characterizing Alzheimer's disease. Results have been variable but not without successes. Some of the cardinal hallmarks of this disorder have been recapitulated through the manipulation of a single gene, providing information on the interrelationship between several pathological events. Also, through the generation of such transgenic animals, potential models are being established for this disease that will be valuable for development of intervention strategies.  相似文献   

18.
Li XJ  Li S 《遗传学报》2012,39(6):239-245
Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets.Huntington's disease is ...  相似文献   

19.
Inflammatory diseases affect a significant portion of the population worldwide and have been intensely studied for several decades. The advent of transgenic technology has allowed researchers to study individual gene contributions to the pathogenesis of these diseases. This has been done using standard inflammatory disease models in transgenic animals and by identifying novel models through the spontaneous generation of disease in the transgenic animal. Recent advances have been made in the understanding of rheumatoid arthritis, pulmonary inflammation, multiple sclerosis and inflammatory bowel disease through the use of transgenic animals in models of human inflammatory disease.  相似文献   

20.
As advanced reproductive technologies become more efficient and repeatable in livestock and laboratory species, new opportunities will evolve to apply these techniques to alternative and non-traditional species. This will result in new markets requiring unique business models that address issues of animal welfare and consumer acceptance on a much different level than the livestock sector. Advanced reproductive technologies and genetic engineering will be applied to each species in innovative ways to provide breeders more alternatives for the preservation and propagation of elite animals in each sector. The commercialization of advanced reproductive techniques in these niche markets should be considered a useful tool for conservation of genetic material from endangered or unique animals as well as production of biomedical models of human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号