首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that the actin cytoskeleton is absolutely essential to pollen germination and tube growth. In this study we investigated the effects of cytochalasin B (CB), which affects actin polymerization by binding to the barbed end of actin filaments, on apple (Malus pumila Mill.) pollen tube growth. Results showed that CB altered the morphology of pollen tubes, which had a larger diameter than control tubes beside inhibiting pollen germination and tube growth. Meantime CB also caused an abnormal distribution of actin filaments in the shank of the treated pollen tubes. Fluo-3/AM labeling indicated that the gradient of cytosolic calcium ([Ca2+]c) in the pollen tube tip was abolished by exposure to CB, which induced a much stronger signal in the cytoplasm. Cellulose and callose distribution in the tube apex changed due to the CB treatment. Immunolabeling with different pectin and arabinogalactan protein (AGP) antibodies illustrated that CB induced an accumulation of pectins and AGPs in the tube cytoplasm and apex wall. The above results were further supported by Fourier-transform infrared (FTIR) analysis. The results suggest the disruption of actin can result in abnormal growth by disturbing the [Ca2+]c gradient and the distribution of cell wall components at the pollen tube apex.  相似文献   

2.
Parre E  Geitmann A 《Planta》2005,220(4):582-592
The cell wall is one of the structural key players regulating pollen tube growth, since plant cell expansion depends on an interplay between intracellular driving forces and the controlled yielding of the cell wall. Pectin is the main cell wall component at the growing pollen tube apex. We therefore assessed its role in pollen tube growth and cytomechanics using the enzymes pectinase and pectin methyl esterase (PME). Pectinase activity was able to stimulate pollen germination and tube growth at moderate concentrations whereas higher concentrations caused apical swelling or bursting in Solanum chacoense Bitt. pollen tubes. This is consistent with a modification of the physical properties of the cell wall affecting its extensibility and thus the growth rate, as well as its capacity to withstand turgor. To prove that the enzyme-induced effects were due to the altered cell wall mechanics, we subjected pollen tubes to micro-indentation experiments. We observed that cellular stiffness was reduced and visco-elasticity increased in the presence of pectinase. These are the first mechanical data that confirm the influence of the amount of pectins in the pollen tube cell wall on the physical parameters characterizing overall cellular architecture. Cytomechanical data were also obtained to analyze the role of the degree of pectin methyl-esterification, which is known to exhibit a gradient along the pollen tube axis. This feature has frequently been suggested to result in a gradient of the physical properties characterizing the cell wall and our data provide, for the first time, mechanical support for this concept. The gradient in cell wall composition from apical esterified to distal de-esterified pectins seems to be correlated with an increase in the degree of cell wall rigidity and a decrease of visco-elasticity. Our mechanical approach provides new insights concerning the mechanics of pollen tube growth and the architecture of living plant cells.  相似文献   

3.
In tip‐confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F‐actin filament and exocytosis. In this study, we demonstrate that apical F‐actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F‐actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F‐actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.  相似文献   

4.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

5.
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.  相似文献   

6.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

7.
Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity.  相似文献   

8.
Imaging the actin cytoskeleton in growing pollen tubes   总被引:7,自引:0,他引:7  
Given the importance of the actin cytoskeleton to pollen tube growth, we have attempted to decipher its structure, organization and dynamic changes in living, growing pollen tubes of Nicotiana tabacum and Lilium formosanum, using three different GFP-labeled actin-binding domains. Because the intricate structure of the actin cytoskeleton in rapidly frozen pollen tubes was recently resolved, we now have a clear standard against which to compare the quality of labeling produced by these GFP-labeled probes. While GFP-talin, GFP-ADF and GFP-fimbrin show various aspects of the actin cytoskeleton structure, each marker produces a characteristic pattern of labeling, and none reveals the entire spectrum of actin. Whereas GFP-ADF, and to a lesser extent GFP-talin, label the fringe of actin in the apex, no similar structure is observed with GFP-fimbrin. Further, GFP-ADF only occasionally labels actin cables in the shank of the pollen tube, whereas GFP-fimbrin labels an abundance of fine filaments in this region, and GFP-talin bundles actin into a central cable in the core of the pollen tube surrounded by a few finer elements. High levels of expression of GFP-talin and GFP-fimbrin frequently cause structural rearrangements of the actin cytoskeleton of pollen tubes, and inhibit tip growth in a dose dependent manner. Most notably, GFP-talin results in thick cortical hoops of actin, transverse to the axis of growth, and GFP-fimbrin causes actin filaments to aggregate. Aberrations are seldom seen in pollen tubes expressing GFP-ADF. Although these markers are valuable tools to study the structure of the actin cytoskeleton of growing pollen tubes, given their ability to cause aberrations and to block pollen tube growth, we urge caution in their use. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Financial Source: National Science Foundation grant Nos. MCB-0077599 and MCB-0516852 to PKH EU Research Training Network TIPNET (project HPRN-CT-2002-00265), Brussels, Belgium, to BV  相似文献   

9.
γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.  相似文献   

10.
Monoclonal antibodies that recognize pectins were used for the localization of esterified (JIM7) and acidic, unesterified (JIM5) forms of pectin in pollen tube walls of Ornithogalum virens L. (x = n = 3). The results indicated that the distribution of the two forms of pectin in the pollen tube wall depended on the medium (liquid or solid) used for pollen germination. In pollen tubes grown in the liquid medium, the localization of JIM7 was limited to the very tip of the pollen tube, whereas the localization of JIM5 indicated a uniform distribution of unesterified pectins in the very tip of the tube and along the subapical parts of the tube wall. In tubes germinated on the medium stabilized with agar (1–2%) the localization of JIM7 and JIM5 indicated the presence of both forms of pectin in the tube tip and along the whole length of the pollen tube wall in a ring-like pattern. Thus, the localization of esterified pectins in the sub-apical part of the pollen tube wall, below the apex of the tube, is described for the first time. Measurements of the growth rates of pollen tubes growing on the two types of medium indicated that oscillations in tube growth rate occur but these do not coincide with the pattern of pectin distribution in the tube wall. Our results complement the previous data obtained for the localization of JIM5 and JIM7 in pollen tube walls of other plant species. (Y.-Q. Li et al. 1994, Sex Plant Reprod 7: 145–150) and provide new insight into an understanding of the construction of the pollen tube wall and the physiology of pollen grain germination. Received: 25 January 1999 / Accepted: 23 June 1999  相似文献   

11.
Lead is a widespread pollutant and has been reported to inhibit pollen tube development, but the mechanism of toxicity involved remains unclear. Here, we report that lead stress significantly prevented Picea wilsonii pollen germination and tube growth and also dramatically altered the tube morphology in a concentration-dependent manner. Fluorescence labeling with JIM 5 (anti-acidic pectin antibody) and Calcofluor white revealed the lead-induced decline of acidic pectin and cellulose, especially in the subapical region. Decolorized aniline blue staining showed the marked accumulation of callose in the apical and subapical regions of lead-treated tubes. Fluorescence labeling with Alexa Fluor 568 phalloidin and anti-tubulin antibody revealed that the distribution of the cytoskeleton in P. wilsonii pollen grains and tubes were developmentally regulated and that lead disturbed the cytoskeleton organization, especially in the shank of the pollen tubes. Taken together, our experiments revealed a link between the dynamics of cytoskeleton organization and the process of P. wilsonii pollen tube development and also indicated that lead disturbed the cytoskeleton assembly and, consequently, cell wall construction. These findings provide new insights into the mechanism of lead toxicity in the tip growth of pollen tubes.  相似文献   

12.
The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments.  相似文献   

13.
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.  相似文献   

14.
Cheung AY  Wu HM 《The Plant cell》2004,16(1):257-269
Formins, actin-nucleating proteins that stimulate the de novo polymerization of actin filaments, are important for diverse cellular and developmental processes, especially those dependent on polarity establishment. A subset of plant formins, referred to as group I, is distinct from formins from other species in having evolved a unique N-terminal structure with a signal peptide, a Pro-rich, potentially glycosylated extracellular domain, and a transmembrane domain. We show here that overexpression of the Arabidopsis formin AFH1 in pollen tubes induces the formation of arrays of actin cables that project into the cytoplasm from the cell membrane and that its N-terminal structure targets AFH1 to the cell membrane. Pollen tube elongation is a polar cell growth process dependent on an active and tightly regulated actin cytoskeleton. Slight increases in AFH1 stimulate growth, but its overexpression induces tube broadening, growth depolarization, and growth arrest in transformed pollen tubes. These results suggest that AFH1-regulated actin polymerization is important for the polar pollen cell growth process. Moreover, severe membrane deformation was observed in the apical region of tip-expanded, AFH1-overexpressing pollen tubes in which an abundance of AFH1-induced membrane-associated actin cables was evident. These observations suggest that regulated AFH1 activity at the cell surface is important for maintaining tip-focused cell membrane expansion for the polar extension of pollen tubes. The cell surface-located group-I formins may play the integrin-analogous role as mediators of external stimuli to the actin cytoskeleton, and AFH1 could be important for mediating extracellular signals from female tissues to elicit the proper pollen tube growth response during pollination.  相似文献   

15.
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.  相似文献   

16.
Parre E  Geitmann A 《Plant physiology》2005,137(1):274-286
While callose is a well-known permeability barrier and leak sealant in plant cells, it is largely unknown whether this cell wall polymer can also serve as a load-bearing structure. Since callose occurs in exceptionally large amounts in pollen, we assessed its role for resisting tension and compression stress in this cell. The effect of callose digestion in Solanum chacoense and Lilium orientalis pollen grains demonstrated that, depending on the species, this cell wall polymer represents a major stress-bearing structure at the aperture area of germinating grains. In the pollen tube, it is involved in cell wall resistance to circumferential tension stress, and despite its absence at the growing apex, callose is indirectly involved in the establishment of tension stress resistance in this area. To investigate whether or not callose is able to provide mechanical resistance against compression stress, we subjected pollen tubes to local deformation by microindentation. The data revealed that lowering the amount of callose resulted in reduced cellular stiffness and increased viscoelasticity, thus indicating clearly that callose is able to resist compression stress. Whether this function is relevant for pollen tube mechanics, however, is unclear, as stiffened growth medium caused a decrease in callose deposition. Together, our data provide clear evidence for the capacity of cell wall callose to resist tension and compression stress, thus demonstrating that this amorphous cell wall substance can have a mechanical role in growing plant cells.  相似文献   

17.
Immunocytochemical localization of polygalacturonic acid (pectin) and methyl-esterified pectin in the walls of pollen tubes of 20 species of flowering plants grown in vitro was investigated by using monoclonal antibodies (MAbs) JIM5 and JIM7 and by means of confocal laser scanning microscopy (CLSM). In general, periodic annular deposits of pectins were found coating the tube wall in species possessing solid styles, and a more uniform pectin sheath in tube walls in species having hollow styles or no styles. We hypothesize that the periodic ring-like structure of the pectin sheath reinforces pollen tubes for passing through the transmitting tract in the style. Esterified pectin which prevents Ca2+-induced gelification of pectate is located predominantly at the apex. This implies that pectin esterification is related to tip wall loosening that is required for cell wall expansion during tip growth of pollen tubes. The occurrence of unesterified pectins in other areas of pollen tube walls suggests that de-esterification of pectin following tip expansion leads to a more rigid form of pectin that contributes to the construction of the pollen tube wall.  相似文献   

18.
Pollen tubes are one of the fastest growing eukaryotic cells.Rapid anisotropic growth is supported by highly active exocytosisand endocytosis at the plasma membrane, but the subcellularlocalization of these sites is unknown. To understand molecularprocesses involved in pollen tube growth, it is crucial to identifythe sites of vesicle localization and trafficking. This reportpresents novel strategies to identify exocytic and endocyticvesicles and to visualize vesicle trafficking dynamics, usingpulse-chase labelling with styryl FM dyes and refraction-freehigh-resolution time-lapse differential interference contrastmicroscopy. These experiments reveal that the apex is the siteof endocytosis and membrane retrieval, while exocytosis occursin the zone adjacent to the apical dome. Larger vesicles areinternalized along the distal pollen tube. Discretely sizedvesicles that differentially incorporate FM dyes accumulatein the apical, subapical, and distal regions. Previous workestablished that pollen tube growth is strongly correlated withhydrodynamic flux and cell volume status. In this report, itis shown that hydrodynamic flux can selectively increase exocytosisor endocytosis. Hypotonic treatment and cell swelling stimulatedexocytosis and attenuated endocytosis, while hypertonic treatmentand cell shrinking stimulated endocytosis and inhibited exocytosis.Manipulation of pollen tube apical volume and membrane remodellingenabled fine-mapping of plasma membrane dynamics and definedthe boundary of the growth zone, which results from the orchestratedaction of endocytosis at the apex and along the distal tubeand exocytosis in the subapical region. This report providescrucial spatial and temporal details of vesicle traffickingand anisotropic growth. Key words: Endocytosis; exocytosis, hydrodynamics, lipophilic FM dyes, pollen tube growth, vesicle trafficking Received 14 September 2007; Revised 23 November 2007 Accepted 7 January 2008  相似文献   

19.
In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.

Arabidopsis VPS18 plays an important role in regulating pollen tube growth through mediating the late endocytic trafficking and secretion of pectin and associated enzymes to the cell wall.  相似文献   

20.
Chen KM  Wu GL  Wang YH  Tian CT  Samaj J  Baluska F  Lin JX 《Protoplasma》2008,233(1-2):39-49
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号