首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为明确工业配方中不同MgSO4添加量对枯草芽胞杆菌B201发酵过程及菌液保存的影响,采用单因素法设置5个MgSO4添加量梯度(质量分数,下同)( 0.13%、0.24%、 0.46%、0.87%、1.70%)。分别记录不同梯度MgSO4处理的发酵液灭菌前后pH值,以及发酵过程中的菌体形态的变化,统计发酵结束后细菌的发酵周期、活菌数和芽肥率,测量发酵结束后发酵液pH以及残糖和残氮含量。实验表明,MgSO4的不同添加量对菌株B201发酵及菌液保存均有显著影响。添加量为0.87%和1.70%处理组灭菌后培养基的pH较灭菌前升高,培养基由中性变为弱碱性。接种后12 h取样观察,菌体明显变形,视野内菌数较少,且随着MgSO4添加量的增加发酵液活菌数下降,残糖和残氮升高,不利于保存。MgSO4相对合适的添加量为0.13%、0.24%和0.46%,三种MgSO4添加量的发酵液活菌数、残氮含量无显著差异;MgSO4添加量为0.24%时菌株B201芽肥率最高为89.33%,而MgSO4添加量为0.13%和0.46%时,芽肥率分别为80%和82.67%;0.46%MgSO4添加量可加速菌株B201发酵进程,发酵周期较其他两个处理缩短45.8%。为提高菌株B201的发酵水平,降低其生产成本,综合考虑MgSO4的添加量以0.46%为宜。研究结果不仅为实验室菌株B201的发酵优化提供参考,还为培养基的优化拓宽了思路。  相似文献   

2.
新型杀虫剂——Spinosad发酵工艺的研究   总被引:5,自引:0,他引:5  
采用^60Co正交设计的方法,选择最优种子培养基配方和发酵培养基配方,在此基础上进行UV,^60Co等诱变,得突变株,其发酵水平较原始菌株提高了150%,同时,对菌株的发酵接种量,发酵液处理及发酵曲线也作了研究。  相似文献   

3.
γ-聚谷氨酸(γ-PGA)对土壤保水和提高植物抗逆性具有明显作用,为了利用农产品加工下脚料发酵生产含有γ-PGA的保水功能肥料,对福建省微生物研究所环境微生物研究室分离到的产γ-PGA的枯草芽胞杆菌(Bacillus subtilis)LX-1的固态发酵培养基配比进行优化。实验以发酵产物的荧光素双醋酸酯酶(FDA)酶活和增比黏度为指标,在通过单因素实验选定固态发酵料的碳源、氮源、无机盐溶液的最佳配比以及无机盐较佳添加量的基础上,通过拟水平均匀设计U7* (74试验,得出菌株LX-1固态发酵的最佳培养基配方:V豆粕V麦麸V无机盐溶液=644,其中无机盐溶液的最佳配方为K2HPO4·3H2O 5.24 g/L、MgSO4·7H2O 0.78 g/L、NaCl 11.67 g/L。为利用农产品加工下脚料发酵生产含γ-PGA保水肥料提供参考。  相似文献   

4.
考察了摇瓶发酵生产S-腺苷-L-蛋氨酸过程中碳源、氮源、无机盐和生长因子以及培养过程中补加L-蛋氨酸时间对S-腺苷-L-蛋氨酸的产量、含量及生物量的影响。并通过均匀实验设计对培养基配方进行优化,在30℃、180 r/m in的培养条件下,得到最后的培养基配方为:葡萄糖30g,酵母粉11g,(NH4)2SO412g,K2HPO4.3H2O 5g,KH2PO  相似文献   

5.
植物细胞离析酶的制备和应用   总被引:2,自引:0,他引:2  
Aspergillus sp.A-19菌经固体发酵研制成一种新的植物细胞离析酶(SeparatasezA—P)。其离析单细胞的酶活力平均为70 767u/g,有效作用的pH在3.0—7.0,温度为20—45℃。发酵培养基配方是麸皮:桔皮粉:(NH4)2SO4(w/w)为100:100:O.63,料水比为1 :2.0,培养适宜条件为25℃、60小时。  相似文献   

6.
旨在以枯草芽胞杆菌Bacillus subtilis J为生产菌株,发酵生产β-甘露聚糖酶,通过优化产酶条件,以达到提高β-甘露聚糖酶产量的目的。利用DNS比色法检测β-甘露聚糖酶活力,采用单因素试验,研究碳氮源种类及碳氮源浓度、温度、pH、接种量和装液量对菌株Bacillus subtilis J发酵产β-甘露聚糖酶的影响,结合响应面试验设计确定菌株Bacillus subtilis J发酵产甘露聚糖酶的最优发酵培养条件。单因素试验和响应面试验得到最优的发酵条件为魔芋粉28 g/L,胰蛋白胨21 g/L,K2HPO4 6 g/L,MgSO4·7H2O 1 g/L,温度31 ℃,pH值 8.5,接种量1%(体积分数),装液量50 mL/250 mL,发酵周期24 h。利用优化后的培养基生产β-甘露聚糖酶,其酶活力达到84.38 U/mL,是初始发酵培养基产酶活力的3.36倍。通过对发酵条件的优化,大幅度提高了β-甘露聚糖酶的产量,为其工业生产提供数据参考。  相似文献   

7.
【背景】粗糙链霉菌(Streptomyces scabrisporus) HBERC-53204是本中心自主分离的一株链霉菌,经鉴定,其产生一种活性化合物司替霉素B (steffimycin B,SMB),对多种动植物重要病原菌具有良好生物活性。【目的】提高SMB发酵水平,拓宽放线菌活性天然产物在农牧业领域的研究及应用。【方法】以本实验室筛选出的一株产SMB的粗糙链霉菌HBERC-53204为研究对象,运用单因素试验筛选培养基的主效碳源、氮源、无机盐及各营养成分最适浓度,并基于单因素试验结果,通过Plackett-Burman (PB)试验设计筛选出显著影响因素,再结合最陡爬坡试验、Box-Behnken (BB)响应面法拟合显著因子与产量的非线性方程求解,进一步优化菌株产SMB的最佳发酵培养基配方。【结果】优化后最佳培养基配方为:葡萄糖36.22 g/L,蛋白胨8.00 g/L,酵母粉8.51 g/L,酸水解酪蛋白1.50 g/L,MgSO4 0.68 g/L,KNO3 1.00 g/L。经摇瓶验证,优化后SMB效价达到477.26 mg/L,比初始配方产量提高1 773.08%。在20 L发酵罐培养120 h,目标化合物产量达到214.48 mg/L。【结论】通过对菌株HBERC-53204发酵培养基优化,显著提高了SMB产量,并在20 L发酵罐中得到验证,在此基础上获得了克级纯品。  相似文献   

8.
阿维菌素高产菌株的选育及阿维菌素B1的鉴定   总被引:5,自引:0,他引:5  
自阿维链霉菌(Streptomyces avermitilis ATCC31272)中分离出了3种不同类型的菌株,其中只有产灰色孢子的菌株能产生阿维菌素(Avermectins),摇瓶发酵单位约100μg/mL。经高频电子流诱变和对发酵培养基的改进,选育出Sa-76菌株,其摇瓶发酵单位可达1000μg/mL。从其菌丝体中提取纯化了阿维菌素B1晶体,其紫外吸收光谱、红外吸收光谱、核磁共振谱(1HNMR和13CNMR)和质谱与国外报道的一致。Sa-76菌株又经2次亚硝基胍诱变,筛选出发酵单位2000μg/mL以上的Sa-76-8菌株。在此基础上,再次用亚硝基胍对Sa-76-8菌株进行了诱变,获得Sa-76-9菌株,结合发酵条件的优化,其发酵单位可高达3500~4000μg/mL。  相似文献   

9.
假丝酵母99-125脂肪酶的发酵工艺研究   总被引:21,自引:0,他引:21  
对假丝酵母99-125脂肪酶的发酵工艺条件进行了一系列研究。选择了合适的培养基成分并进行优化 ,获得了最优的摇瓶培养基配方 (% ,W/V) :豆油 4.0 ,全脂豆粉 4.0 ,K2HPO40.1,KH2PO4 0.1。产酶水平能达到 5000IU/mL。在 30L发酵罐上进行初步放大实验 ,其产酶水平能达到 8100IU/mL。在1m3发酵罐上进行中试放大 ,产酶水平可达到 8000IU/mL。  相似文献   

10.
对16株香槟酒酵母的发酵性能进行试验.结果表明,C1、C3、C4菌株的性能优良,具有发酵活性高,泡沫细腻,絮凝性强等优点,适于香槟酒(起泡酒)二次发酵。  相似文献   

11.
从茶树内生真菌筛选产漆酶的菌株,分析不同营养因素和培养条件对菌株漆酶酶活力的影响。采用6种显色底物的平板初筛和酶活测定的复筛方法,从15株茶树内生真菌菌株中筛选获得1株产漆酶酶活较高的菌株CSN 4。单因素分析结果显示,液态发酵条件下菌株CSN-4适宜的主要培养基成分是麸皮和蛋白胨;菌株CSN-4分别在麸皮30 g/L、蛋白胨2.5 g/L、CuSO4·5H2O 0.015 g/L和茶水6 g/L时发酵产漆酶酶活最高。发酵条件试验结果表明,菌株CSN-4分别在接种量为6个菌饼(直径6 mm)、装液量60 mL/250 mL、pH 4.8、摇床转速120 r/min,培养温度为28 ℃时产漆酶酶活较高。在培养基中添加麸皮和茶水对菌株CSN-4产漆酶有明显的促进作用。经过培养基成分及培养条件优化后,菌株CSN 4产漆酶酶活显著升高,达到2 417 U/L。  相似文献   

12.
光合细菌P4菌株从柠檬酸发酵废水流经的污泥中分离得到。经鉴定P4菌株为红假单胞菌属(Rhodopseudomonas),浑球红假单胞菌(R. sphacroides)。P4菌株以乙酸钠为碳源生长良好,50小时进入稳定期(菌液OD660nm=108—2.0)。将经过可溶化的柠檬酸发酵废水用P4菌株的乙酸钠培养液进行处理,作用72小时后废水COD的去除率达85.3%。  相似文献   

13.
金针菇菌丝生长的营养需求及液体发酵研究   总被引:8,自引:0,他引:8  
金针菇菌丝体液体培养表明,淀粉、玉米粉是适宜的碳源,黄豆粉、酵母粉、蛋白陈是适宜的氮源。采用正交设计考察了培养基的营养成分及其最适浓度。除碳、氮源外,Vb1及K、P、Mg、S等元素也是金针菇菌丝体生长所必需的营养因子。适宜的碳氮比(C/N.)为21~24:1。本研究建立的有实用价值的液体发酵培养基配方是(%):玉米粉4.0、葡萄粉1.0~2.0、黄豆粉15、KH2PO40.1~0.15、MgSO4·7H2O0.05  相似文献   

14.
液化沙雷氏菌胞外脂肪酶产生条件的研究   总被引:1,自引:0,他引:1  
刘慧  邹文欣  郁文焕   《微生物学通报》1995,22(6):343-346
新分离的一株液化沙雷氏菌(Serratialiquefaciens)能产生大量胞外碱性脂肪酶,本文在摇瓶发酵水平上考察了培养基组成、培养条件等因素对其生成脂肪酶的影响。在优选条件下,即培养基组成为(%)玉米油1.25,豆饼粉2.0,蛋白胨1.0,酵母膏0.2,KHPO0.2,MgSO·7HO0.1,初始pH为7.25时,28℃,150r/min旋转摇床振荡培养40h,该菌株的发酵液酶活达到43u/  相似文献   

15.
碳酸钙促进丙酮酸发酵过程中α-酮戊二酸的形成   总被引:10,自引:0,他引:10  
在多重维生素营养缺陷型菌株光滑球拟酵母CCTCC M202019发酵生产丙酮酸的摇瓶和发酵罐实验中发现,CaCO3的添加对发酵液中α-酮戊二酸(α-KG)的积累有重要影响。在维生素浓度不变且供氧充分的前提下,延迟CaCO3添加时间可明显抑制α-KG的产生,并提高丙酮酸与α-KG的碳摩尔比(CPYR/CαKG);而增加培养基中的CaCO3浓度会导致αKG积累的增加。用不同物质调节发酵液中pH的实验证实:在丙酮酸发酵过程中, Ca2+对αKG的积累起主要作用,CO32-起辅助作用,两者对α-KG的积累具有协同效应。维持培养基中CaCO3浓度不变,改变培养基中硫胺素的浓度,对αKG的积累,特别是对CPYR/Cα-KG值没有影响;而增加培养基中生物素的浓度,则导致αKG的浓度不断上升且CPYR/Cα-KG值不断下降。当有Ca2+存在时,胞内丙酮酸羧化酶的活性最高可提高40%,而丙酮酸脱氢酶系的活性没有明显变化。结果表明,丙酮酸发酵过程中α-KG的形成是由于CaCO3促进了丙酮酸羧化反应,其中Ca2+可显著提高丙酮酸羧化酶的活性,而CO32-则有可能作为丙酮酸羧化反应的底物。  相似文献   

16.
本文报道适当浓度的Ca2+、Fe2+在发酵液中能抑制噬菌体530对谷氨酸生产菌株T6-13、B4的裂解,谷氨酸发酵产量不低于对照菌株。  相似文献   

17.
控制pH环境对出芽短梗霉胞外多糖合成的影响   总被引:8,自引:0,他引:8  
采用添加 Ca CO3 和 HCl的方法研究了 p H对出芽短梗霉多糖发酵的影响规律。在 P2培养基中发酵2 4 h,该菌有一个强烈的产酸期 ,导致 p H迅速下降到 3.6左右。在此 p H环境下继续发酵 12 0 h,多糖产量仅为 5.9g/ L。如果用 MP2培养基 (P2+ 0 .5% Ca CO3 )发酵 ,由于 Ca CO3 缓冲了发酵 p H的下降 ,在整个发酵过程中 p H值可以维持在 5.0以上 ,多  相似文献   

18.
本文对嗜线虫致病杆菌 (Xenorhabdus nematophilus)产生抗生素的发酵培养基和发酵条件进行了研究 ,同时对该菌代谢过程 p H值、还原糖、总糖、氨基氮与抗生素产量的关系进行了分析。通过筛选该菌对碳源和氮源的要求 ,用正交试验初步确定了该菌产素的最佳发酵培养基和条件为 :玉米粉 1% ,大豆粉 3% ,蔗糖 1% ,蛋白胨 1.5% ,KH2 PO4 0 .0 2 % ,Mg SO4 0 .2 % ,活化剂  相似文献   

19.
以淡水湖泊泥土中分离出的 30 0多株肠杆菌 (Enterobacter)为出发菌株 ,利用常规筛选方法选出 2株 1 3 丙二醇产生菌 (Enterobacteraerogenes)。经UV、DES、NTG、EMS、LiCl单独及复合诱变 ,选育出一株 (E aero N 56) 1 3 PD高产突变株。通过单因素实验 ,确定了E aero N 56菌株 1 3 PD发酵培养基为 :甘油 90g L ,NH4Cl1 50g L  相似文献   

20.
供试的 4种无机盐中 ,K2 HPO4的单因子效应最好 ;K2 HPO4+KCl +MgSO4表现出最好的正协同效应。 5种碳源都能被PT95菌株利用 ,麦芽糖和蔗糖是最适碳源。在以酵母膏为氮源的培养基上 ,PT95菌株的菌核生物量最高 ;而在以蛋白胨为氮源的培养基上 ,类胡萝卜素产率最高 ;铵盐和尿素对菌核形成不利 ;硝酸钠是最好的无机氮源。培养基中的含氮量保持在 0.24~ 0.48g L,含  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号