首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Anterior Gradient-2(AGR2)在一系列腺癌中都存在过表达,诸多证据表明,AGR2可以在胞外促进肿瘤的生长和转移。AGR2是一种分泌性蛋白而且可以在很多癌症患者的血清和尿液中检测到,因此AGR2是一个潜在的肿瘤检测分子标志物和肿瘤治疗靶标。分子生物学家陆续发现了一些AGR2潜在的结合靶标,这对阐明其致癌机制有着重大意义。本文就近年来关于AGR2的结构和功能以及将其作为肿瘤检测指标或治疗靶标的研究作一综述。  相似文献   

2.
肿瘤的发生、发展是一个多步骤、多基因参与的、复杂的系统性过程.分子治疗作为21世纪最有希望根治人类肿瘤的技术,其治疗技术的关键在于靶分子的选择,寻找合适的靶分子一直是分子治疗肿瘤的重要方向.针对近年来肿瘤治疗研究中发现的端粒酶靶标、抗血管生成基因靶标、apoptin、survivin、stathmin、autophagy、PUMA、转铁蛋白受体靶标和相应的治疗策略作一综述.  相似文献   

3.
最近发表于《科学》杂志(Science)的“人类乳腺癌和结直肠癌共有编码序列”一文,是继人类基因组计划完成后,对人类疾病状态下基因组改变的首次无偏倚系统性分析.对如何利用该研究发现的候选癌基因获得肿瘤治疗药物的新靶标作初步分析,并介绍这些候选癌基因在识别肿瘤高危人群和依据分子机制更新肿瘤分型方面的潜在应用价值.  相似文献   

4.
量子点是一种半导体纳米晶体,它可发出激发荧光,具有亮度高、稳定时间长和发射光谱可调节等特性,是同时检测多信号的良好材料.这些独特性质使得它们在肿瘤诊治领域中的应用日益受到人们的重视.对量子点进行功能化修饰,如偶联抗体等活性物质后,可以对肿瘤细胞进行特异性识别及示踪,以实现对肿瘤的诊断和治疗.文中分别从分子靶向识别、淋巴结定位和药物传递等方面探讨了功能化量子点在肿瘤诊断和治疗中的最新进展.此外,还讨论了量子点的毒性以及用于肿瘤检测和治疗的多功能量子点的设计方法,并提出了其实际应用的潜在方向.  相似文献   

5.
肿瘤的特异性基因突变是肿瘤免疫疗法的理想靶标,突变的基因在健康组织中缺乏表达,而且具有高度免疫原性,容易被免疫系统识别。肿瘤患者突变基因组的高度特异性使得个体化免疫治疗存在极大挑战,而每一种肿瘤都具有区别于其他肿瘤的代表性的基因突变特征,基于这些突变特征,有可能开发出特定肿瘤适用的免疫治疗策略。文中提出一个兼顾抗原胞内呈递和与胞外MHC分子结合能力的肿瘤新抗原预测策略,整体设计更为合理;相对于常规方法,能够大幅缩小实验验证的范围。基于该策略,利用TCGA数据库中多种肿瘤的基因突变数据进行肿瘤新抗原预测并预测到大量潜在的肿瘤新抗原。肿瘤新抗原的预测结果显示出肿瘤类型的特异性,并且在特定肿瘤数据集中能够覆盖20%-70%不等比例的肿瘤患者。文中提出的肿瘤新抗原预测方案在未来的肿瘤临床治疗上具有潜在的应用价值。  相似文献   

6.
AGR2(anterior gradient.2)是一种分泌蛋白,广泛存在于前列腺、乳腺、肺和胰腺等腺体组织,并在这些腺体的肿瘤组织过量表达,与肿瘤细胞的存活、生长和转移相关。临床上,AGR2的表达与乳腺癌、前列腺癌、胰腺癌等癌症的发展和预后相关,被认为是一个很有前途的早期诊断和判定预后的标志性基因。该文就目前AGR2的研究现状,尤其是肿瘤相关的功能、机制和临床调查上的最新研究进展加以综述。  相似文献   

7.
肿瘤细胞的一大重要特征是代谢水平的改变。戊糖磷酸途径作为细胞产生NADPH和五碳糖的主要通路,在肿瘤发生发展过程中发挥着重要功能。转酮酶是戊糖磷酸途径中的关键酶之一,越来越多的研究表明其与癌症病人预后具有显著相关性。作为肿瘤诊断、治疗的潜在靶标,转酮酶具有重要的研究价值。我们就目前癌症研究中对转酮酶的研究进展做简要综述。  相似文献   

8.
蛋白磷酸酶Cdc25C能够使有丝分裂激酶CDK1/cyclin B去磷酸化,从而促进细胞周期的进程.已经在一些肿瘤细胞中检测到Cdc25C的过量表达,这使得Cde25C成为肿瘤治疗中的潜在靶标.通过随机筛选,发现了八个CAe25C的天然新抑制剂(1-8),其IC50值在1.66~75.07umol/L之间.肿瘤细胞毒试验结果表明,其中四个化合物(化合物3,4,5,7)对十种肿瘤细胞株显示一定的细胞毒活性,其IC50值皆小于10ug/ml.  相似文献   

9.
肿瘤转移研究的现状与趋势   总被引:1,自引:0,他引:1  
肿瘤转移是恶性肿瘤的主要特征,是引起癌症患者死亡的首要因素.肿瘤转移的发生涉及到肿瘤细胞及其所处的微环境中复杂的信号通路,这些信号通路的激活及相互作用介导了肿瘤的转移、侵袭和在血液/淋巴循环系统中存活,以及在转移靶部位的生长过程.肿瘤转移是一个复杂的、多因素调控的动态过程,对于肿瘤转移机制的研究将有助于深入了解转移过程,并可以鉴定到有意义的治疗靶标,为临床诊断和治疗奠定基础.  相似文献   

10.
Survivin在细胞内环境稳定和肿瘤的形成中起重要的作用,在肿瘤的治疗中,survivivin的靶向治疗调节与一些典型的信号通路和一系列生长因子有关。众所周知,survivin是一个小的凋亡蛋白抑制因子,也是一个主要的抗癌靶标,与细胞分裂和凋亡抑制有关,它在大部分正常组织中缺失但在大部分癌组织中过表达。Survivin是一个与众多细胞信号通路有关的节点蛋白,这些通路协调各种细胞因子、转录网络和修饰基因,通过调节癌细胞内环境稳定直接或间接促进细胞增殖。临床前研究数据表明,survivin的抑制可以降低细胞增殖促进凋亡,增加细胞对细胞毒药物和放疗的敏感性,其过表达与不良预后和治疗耐受有关。因此对于癌症治疗,survivin是一个潜在的靶标。  相似文献   

11.
12.
The epidermal growth factor receptor (EGFR) is a well characterized receptor-tyrosine kinase that functions in development and serves a vital role in many human cancers. Understanding EGFR regulatory mechanisms, and hence approaches for clinical intervention, has focused on ligand-receptor interactions and tyrosine kinase activity. Here, we show using the NCI-H460 lung and A431 epidermoid human cancer cell lines that EGFR binding to anterior gradient homolog 2 (AGR2) in the endoplasmic reticulum is required for receptor delivery to the plasma membrane and thus EGFR signaling. Reduced AGR2 protein levels or mutation of an essential cysteine in the active site result in decreased cell surface EGFR and a concomitant decrease in signaling as reflected by AREG, EGR1, and FOS expression. Similar to previously described EGFR nulls, an AGR2 null also resulted in embryonic lethality. Consistent with its role in regulating EGFR-mediated signaling, AGR2 expression is also enhanced in many human cancers and promotes the transformed phenotype. Furthermore, EGFR-mediated signaling in NCI-H460 cells, which are resistant to the tyrosine kinase inhibitor AG1478, is also disrupted with reduced AGR2 expression. The results provide insights into why cancer prognosis or response to therapy often does not correlate with EGFR protein or RNA levels because they do not reflect delivery to the cell surface where signaling is initiated. AGR2, therefore, represents a novel post-translational regulator of EGFR-mediated signaling and a promising target for treating human cancers.  相似文献   

13.
The human Anterior GRadient 2 (AGR2) protein is an Endoplasmic Reticulum (ER)-resident protein which belongs to the Protein-Disulfide Isomerase (PDI) superfamily and is involved to productive protein folding in the ER. As such AGR2, often found overexpressed in adenocarcinomas, contributes to tumour development by enhancing ER proteostasis. We previously demonstrated that AGR2 is secreted (extracellular AGR2 (eAGR2)) in the tumour microenvironment and plays extracellular roles independent of its ER functions. Herein, we show that eAGR2 triggers cell proliferation and characterize the underlying molecular mechanisms. We demonstrate that eAGR2 enhances tumour cell growth by repressing the tumour suppressor p21CIP1. Our findings shed light on a novel mechanism through which eAGR2 behaves as a growth factor in the tumour microenvironment, independently of its ER function, thus promoting tumour cell growth through repression of p21CIP1. Our results provide a rationale for targeting eAGR2/p21CIP1-based signalling as a potential therapeutic target to impede tumour growth.  相似文献   

14.
We aimed to evaluate immunohistochemically the expression of the human Anterior Gradient-2 (AGR2), a gene which has recently been proposed as an oncogene for lung carcinoma development, in non small cell lung cancer and to correlate the findings to clinico-pathological data including patient survival. 95 cases of NSCLC were immunostained using a polyclonal AGR2 antibody and statistical analyses were applied to test for prognostic and diagnostic associations. AGR2 was expressed in 66.3% of cases, preferentially adenocarcinomas. There were no relevant associations with clinico-pathological parameters. A prognostic value of AGR2 could not be demonstrated neither in multivariate nor in univariate analyses. Interestingly, this is the first study to demonstrate AGR2 expression in squamous cell carcinomas. Although a prognostic value of AGR2 seems unlikely further studies are warranted to investigate the biological role of AGR2 in NSCLC and its differential expression according to histology.  相似文献   

15.
Anterior Gradient 2 (AGR2), an ER stress-inducible protein, has been reported to be localized in endoplasmic reticulum (ER) and its level is elevated in numerous metastatic cancers. Recently, it has been demonstrated that AGR2 is involved in the control of ER homeostasis. However, the molecular mechanism how AGR2 regulates ER stress response remains unclear. Herein we show that AGR2 homo-dimerizes through an intermolecular disulfide bond. Moreover, dimerization of AGR2 attenuates ER stress-induced cell death through the association with BiP/GRP78. Thus, these results suggest that dimerization of AGR2 is crucial in mediating the ER stress signaling pathway.  相似文献   

16.
Anterior gradient-2 (AGR2) functions in a range of biological systems, including goblet cell formation, limb regeneration, inhibition of p53, and metastasis. There are no well-validated binding proteins for AGR2 protein despite the wealth of data implicating an important cellular function in vertebrates. The yeast two-hybrid system was used to isolate the ATP binding protein Reptin as an AGR2-interacting protein. AGR2 formed a stable complex in human cell lysates with Reptin, thus validating Reptin as an AGR2 binding protein in cells. Reptin was also shown to be overproduced in a panel of primary breast cancer biopsy specimens, relative to normal adjacent tissue from the same patient, suggesting a role in cancer growth in vivo. Mutations were made at the two ATP binding motifs in Reptin to evaluate the effects of ATP on Reptin-AGR2 complex stability. Loss-of-ATP binding mutations at the Walker A motif (K83A) or gain-of-ATP binding mutations at the Walker B motif (D299N) resulted in Reptin mutants with altered oligomerization, thermostability, and AGR2 binding properties. These data indicate that the two ATP binding motifs of Reptin play a role in regulating the stability of the AGR2-Reptin complex. The minimal region of AGR2 interacting with Reptin was localized using overlapping peptide libraries derived from the AGR2 protein sequence. The Reptin docking site was mapped to a divergent octapeptide loop in the AGR2 superfamily between amino acids 104 and 111. Mutations at codon Y104 or F111 in full-length AGR2 destabilized the binding of Reptin. These data highlight the existence of a protein docking motif on AGR2 and an ATP-regulated peptide-binding activity for Reptin. This knowledge has implications for isolating other AGR2-interacting proteins, for developing assays to isolate small molecules that target the Reptin ATP binding site, and for measuring the effects of the Reptin-AGR2 complex in cancer cell growth.  相似文献   

17.

Background

Anterior gradient homolog 2 (AGR2) is a functional protein with critical roles in a diverse range of biological systems, including vertebrate tissue development, inflammatory tissue injury responses, and cancer progression. Clinical studies have shown that the AGR2 protein is overexpressed in a wide range of human cancers, including carcinomas of the esophagus, pancreas, breast, prostate, and lung, making the protein as a potential cancer biomarker. However, the general biochemical functions of AGR2 in human cells remain undefined, and the signaling mechanisms that drive AGR2 to inhibit p53 are still not clearly illustrated. Therefore, it is of great interest to develop molecular probes specifically recognizing AGR2 for its detection and for the elucidation of AGR2-associated molecular mechanism.

Methodology/Principal Findings

Through a bead-based and flow cytometry monitored SELEX technology, we have identified a group of DNA aptamers that can specifically bind to AGR2 with Kd values in the nanomolar range after 14 rounds of selections. Aptamer C14B was chosen to further study, due to its high binding affinity and specificity. The optimized and shortened C14B1 has special G-rich characteristics, and the G-rich region of this binding motif was further characterized to reveal an intramolecular parallel G-quadruplex by CD spectroscopy and UV spectroscopy. Our experiments confirmed that the stability of the G-quadruplex structure was strongly dependent on the nature of the monovalent ions and the formation of G-quadruplex structure was also important for the binding capacity of C14B1 to the target. Furthermore, we have designed a kind of allosteric molecule beacon (aMB) probe for selective and sensitive detection of AGR2.

Conclusion/Significance

In this work, we have developed new aptamer probes for specific recognition of the AGR2. Structural study have identified that the binding motif of aptamer is an intramolecular parallel G-quadruplex structure and its structure and binding affinity are strongly dependent on the nature of the monovalent ion. Furthermore, with our design of AGR2-aMB, AGR2 could be sensitively and selectively detected. This aptamer probe has great potential to serve as a useful tool for early diagnosis and prognosis of cancer and for fundamental research to elucidate the biochemical functions of AGR2.  相似文献   

18.
Nasopharyngeal carcinoma (NPC) has a high metastatic character in the clinic, but its mechanism is not clear. As a carcinogen with organ specificity for the nasopharyngeal epithelium, N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis. Herein, our data revealed that anterior gradient 2 (AGR2) was overexpressed in human NPC tissues, particularly in cervical lymph node metastatic NPC (LMNPC). High AGR2 expression was associated with NPC metastasis. Importantly, DNP induced AGR2 expression, and increased cell motility and invasion in the NPC cell line 6–10B. However, DNP-mediated cell motility and invasion was dramatically decreased when transfected with siRNA-AGR2. Further, AGR2 directly regulated cathepsin (CTS) B and D by binding them in vitro. These results indicate that DNP induces AGR2 expression, regulates CTSB and CTSD, increases cell motility and invasion, and promotes NPC tumor metastasis. Therefore, DNP-mediated AGR2 expression may be an important factor in prolific NPC metastasis.  相似文献   

19.
Many regulatory proteins are homo‐oligomeric and designing assays that measure self‐assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer‐associated oncoprotein AGR2. A two site‐sandwich microtiter assay (2SMTA) was designed using a DyLight800‐labeled monoclonal antibody that binds to an epitope in AGR2 to screen for synthetic self‐peptides that might regulate dimer stability. Peptides derived from the intrinsically disordered N‐terminal region of AGR2 increase in trans oligomer stability as defined using the 2SMTA assay. A DSS‐crosslinking assay that traps the AGR2 dimer through K95‐K95 adducts confirmed that Δ45‐AGR2 was a more stable dimer using denaturing gel electrophoresis. A titration of wt‐AGR2, Δ45‐AGR2 (more stable dimer), and monomeric AGR2E60A revealed that Δ45‐AGR2 was more active in binding to Reptin than either wt‐AGR2 or the AGR2E60A mutant. Our data have defined a functional role for the AGR2 dimer in the binding to its most well characterized interacting protein, Reptin. The ability to regulate AGR2 oligomerization in trans opens the possibility for developing small molecules that regulate its' biochemical activity as potential cancer therapeutics. The data also highlight the utility of this oligomerization assay to screen chemical libraries for ligands that could regulate AGR2 dimer stability and its' oncogenic potential.  相似文献   

20.
Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a well-established oncogene. Here, we found that Agr2-/- mice had a decreased fat mass and hepatic and serum lipid levels compared with their wild-type littermates after fasting, and exhibited reduced high-fat diet (HFD)-induced fat accumulation. Transgenic mice overexpressing AGR2 (Agr2/Tg) readily gained fat weight on a HFD but not a normal diet. Proteomic analysis of hepatic samples from Agr2-/- mice revealed that depletion of AGR2 impaired long-chain fatty acid uptake and activation but did not affect de novo hepatic lipogenesis. Further investigations led to the identification of several effector substrates, particularly fatty acid binding protein-1 (FABP1) as essential for the AGR2-mediated effects. AGR2 was coexpressed with FABP1, and knockdown of AGR2 resulted in a reduction in FABP1 stability. Physical interactions of AGR2 and FABP1 depended on the PDI motif in AGR2 and the formation of a disulfide bond between these two proteins. Overexpression of AGR2 but not a mutant AGR2 protein lacking PDI activity suppressed lipid accumulation in cells lacking FABP1. Moreover, AGR2 deficiency significantly reduced fatty acid absorption in the intestine, which might be resulted from decreased fatty acid transporter CD36 in mice. These findings demonstrated a novel role of AGR2 in fatty-acid uptake and activation in both the liver and intestine, which contributed to the AGR2-mediated lipid accumulation, suggesting that AGR2 is an important regulator of whole-body lipid metabolism and down-regulation of AGR2 may antagonize the development of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号