首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
EGF和孕酮对小鼠卵母细胞减数分裂的重新启动具有促进作用,EGF的作用是通过促进颗粒细胞分泌孕酮实现的。使用孕酮合成关键酶3β-HSD的抑制剂Epostane可抑制EGF促进单层培养卵巢颗粒细胞的孕酮合成,从而降低EGF对卵母细胞的促进作用。Ca~(2 )参与了EGF和孕酮的促减数分裂重新启动作用。肝素可降低两者的作用。EGF和孕酮均可使单个卵丘颗粒细胞内的Ca~(2 )水平出现波动,并且EGF使卵丘细胞维持较高的Ca~(2 )水平。  相似文献   

2.
本实验利用卵母细胞的体外培养模型,将小鼠卵丘-卵母细胞复合体(CEO)和去卵丘卵母细胞(DO)在体外培养,系统研究了促性腺激素(FSH、hCG)诱导小鼠卵母细胞减数分裂的机制。结果显示,FSH能剂量依赖性地诱导CEO恢复减数分裂(Fig.1),但对DO无影响;hCG对CEO、DO皆无效果(Fig.2);用FSH预处理CEO时间达到1小时后,就能显著诱导卵母细胞成熟,2小时后作用达到最大,不再增强(Fig.3);用FSH处理CEO2小时及24小时的培养液,能诱导DO恢复减数分裂,但预处理卵丘细胞24小时的培养液,并不能诱导DO恢复减数分裂(Fig.4A);这种培养液在70℃下30分钟后,仍能刺激DO成熟(Fig.4B);甾醇类物质合成抑制剂酮康唑,可剂量依赖性地抑制FSH的促减数分裂恢复作用(Fig.5)。这些结果说明,FSH可能诱导卵丘-卵母细胞复合体中的卵丘细胞分泌一种促减数分裂恢复物质;该物质用于卵母细胞,诱导其恢复减数分裂而成熟;这种物质可能是一种甾醇类物质。  相似文献   

3.
EGF促进小鼠卵母细胞体外减数分裂启动机制的研究   总被引:11,自引:1,他引:10  
EGF和孕酮对小鼠卵母细胞减数分裂的重新启动具有促进作用,EGF的作用是通过促进颗粒细胞分泌孕酮实现的。使用孕酮合成关键酶3β-HSD的抑制剂Epostane可抑制EGF促进单层培养卵巢颗粒细胞的孕酮合成从而降低EGF对卵母细胞的促进作用。Ca^2+参与了EGF和孕酮的促减数分裂重新启动作用。肝素可降低两者的作用。EGF和孕酮均可使单个卵丘颗粒细胞内的Ca^2+水平出现波动,并且EGF使卵丘细胞维  相似文献   

4.
研究促卵泡激素(FSH),人绒毛膜促性腺激素(hCG)对昆明白小鼠卵母细胞成熟和卵丘扩展的影响,以及体外培养时卵丘扩展与卵母细胞成熟之间的关系,FSH可以明显促进次黄嘌吟(HX)抑制条件下的卵丘-卵母细胞复合体CEO卵母细胞成熟及卵丘扩展,其最佳作用剂量为100IU/L,且FSH作用30分钟即可以使CEO获得恢复减数分裂的信息,在HX存在的条件下,FSH处理后10hr,CEO卵丘明显扩展,而生发泡破裂(GVBD)则在16-20hr明显增加,所有卵丘未扩展的CEO中卵母细胞均未发生GVBD,低剂量hCG单独或与FSH共同存在,对CEO卵母细胞成熟及卵丘扩展均无明显影响;高剂量hCG可以部分抑制FSH对卵母细胞成熟的促进作用,结果表明:FSH明显促进CEO卵母细胞成熟及卵丘扩展,而hCG却不具有此作用,体外培养条件下(含次黄嘌呤),卵丘扩展是卵母细胞成熟的前提条件,但卵母细胞成熟并不需要卵丘完全扩展。  相似文献   

5.
哺乳动物卵母细胞第一次减数分裂阻滞期间,来自卵母细胞的Gs-GPR-ADCY诱导环磷酸腺苷(cyclic adenosine monophosphate, cAMP)的生成,升高卵母细胞内cAMP的水平。颗粒细胞中的C型利钠肽(natriuretic peptides C, NPPC)和肌苷-5'-磷酸脱氢酶(inosine-5′-monophosphate dehydrogenase, IMPDH)调节卵丘颗粒细胞中环磷酸鸟苷(cyclic guanosinc monophosphate, cGMP)的生成,cGMP进入卵母细胞抑制cAMP-磷酸二酯酶(cAMP-phosphodiesterase, cAMP-PDE)活性,升高cAMP浓度,并使细胞质成熟促进因子(maturation promoting factor, MPF)处于非活化态,最终诱导了减数分裂阻滞在双线期。促黄体素(luteinizing hormone, LH)峰的出现一方面降低了壁颗粒细胞中NPPC的水平,另一方面激活了卵丘颗粒细胞丝裂原活化蛋白激酶3/1 (mitogen-activated protein kinase3/1, MAPK3/1),两者均降低了卵母细胞中cGMP的浓度,促进cAMP水解,使得MPF处于活化态,最终诱导了减数分裂恢复。该综述将探讨这两种环核苷酸如何通过阻断或启动减数分裂过程来调节卵母细胞成熟,并对未来的研究提供一定的见解。  相似文献   

6.
哺乳动物排卵前,卵泡中的卵母细胞一直被阻滞在减数分裂I前期的双线期,卵泡壁层颗粒细胞分泌的C型利尿钠肽(C-type natriuretic peptide, NPPC)与表达在卵丘细胞中的同源利尿钠肽受体2 (natriuretic peptide receptor 2, NPR2)结合,产生的cGMP是维持减数分裂阻滞的关键因子。另外,cAMP、缝隙连接、肌苷单磷酸脱氢酶(inosine monophosphate dehydrogenase,IMPDH)等多种重要调控因子也参与了减数分裂阻滞。当垂体分泌的促黄体素(luteinizing hormone, LH)峰到来时,LH通过多种调控方式迅速降低胞内cGMP水平,使卵母细胞恢复减数分裂。本文对维持卵母细胞减数分裂I阻滞以及LH诱导减数分裂恢复的机制研究进展进行综述,为相关生殖疾病的预防和诊治提供思路。  相似文献   

7.
动物体内卵泡排卵前促黄体素(luteinizing hormone, LH)诱导了卵丘颗粒细胞扩散,并启动卵母细胞恢复减数分裂。普遍认为,卵泡壁层颗粒细胞表达LH受体,卵母细胞及其周围卵丘细胞不表达LH受体,LH通过作用于卵泡壁层颗粒细胞产生信号分子,这些信号分子作用于卵丘颗粒细胞介导了LH生物作用。然而,一直以来,关于排卵前介导LH作用而诱导卵母细胞成熟的机制一直存在争议。目前研究认为,LH作用于卵泡壁层颗粒细胞后产生了EGF类因子,并与颗粒细胞的受体结合,促进了卵母细胞的成熟和发育。由于体外成熟的卵丘卵母细胞复合体来源于生长卵泡,其卵丘颗粒细胞EGF类因子信号系统不完善,目前的体外成熟培养体系难以模拟卵泡内的生理环境,导致卵母细胞体外发育能力较差,限制了这些卵母细胞的利用效率。本文综述了颗粒细胞EGF类因子信号系统、EGF类因子在调控卵母细胞成熟中的作用及对卵母细胞发育能力的影响,为优化卵母细胞体外成熟培养体系,完善卵丘颗粒细胞的EGF类因子的信号系统,进而提高卵母细胞体外成熟效率提供理论依据。  相似文献   

8.
本实验利用卵母细胞的体外培养模型,将小鼠卵丘-卵母细胞复合体(CEO)和去卵丘卵母细胞(DO)在体外培养,系统研究了促性腺激素(FSH、hCG)诱导小鼠卵母细胞减数分裂的机制。结果显示,FSH能剂量依赖性地诱导CEO恢复减数分裂(Fig.1),但对DO无影响;hCG对 CEO、 DO皆无效果(Fig.2);用 FSH预处理CEO时间达到1小时后,就能显著诱导卵母细胞成熟,2小时后作用达到最大;不再增强(Fig.3);用 FSH处理CEO 2小时及24小时的培养液,能诱导DO恢复减数分裂,但预处理卵丘细胞24小时的培养液,并不能诱导DO恢复减数分裂(Fig.4A);这种培养液在70℃下30分钟后,仍能刺激DO成熟(Fig.4B);甾醇类物质合成抑制剂酮康唑,可剂量依赖性地抑制FSH的促减数分裂恢复作用(Fig.5)。这些结果说明, FSH可能诱导卵丘-卵母细胞复合体中的卵丘细胞分泌一种促减数分裂恢复物质;该物质作用于卵母细胞,诱导其恢复减数分裂而成熟;这种物质可能是一种甾醇类物质。  相似文献   

9.
小鼠卵母细胞体外成熟、体外受精的效果观察   总被引:2,自引:0,他引:2  
目的 研究不同培养条件对小鼠卵母细胞体外成熟及体外受精率的影响。方法 小鼠卵母细胞分别在含有FSH、BSA和胰岛素的培养液中体外成熟,在Whitten 氏液中体外受精,比较体外成熟率、体外受精率。结果 1- 裸卵(DO) 的体外成熟率、体外受精率(81-4% ,31-0 % ) 均高于卵丘卵母细胞复合体(COC)(48-6 % ,27-1% ) 。2- 在培养液中添加FSH、胰岛素和BSA,卵母细胞的体外成熟率为77-9 % ,82-3% 、60-7% ;体外受精率为77-2 % 、72-6 % 、26-7% ;2 - 细胞率为49-2 % 、34-2 % 、10-0% 。胰岛素组的卵母细胞IVM 率最高,但IVF率、2 - 细胞率低于FSH 组。3- 添加BSA的两组的体外受精率只有26-7 % 、25-8 % ,显著低于其他组,其体外成熟率也较添加FSH 和胰岛素的组成。4- 排出第一极体(PbI) 的卵母细胞的体外受精率和2 - 细胞率(85-9 % ,22-4% ) 均高于GV期卵母细胞(71-1 % ,12-9 % ) 。结论 1- 卵丘卵母细胞(COC) 较裸卵(DO) 的体外成熟率、体外受精率都低,差异显著(P成熟< 0-01;P受精< 0-05) 。2-FSH 和胰岛素均能提高小鼠卵母细胞的体外成熟率、体外受精率。3-BSA可以降低小鼠卵母细胞体外受精率,差异极显著。4-GV 期卵母细胞的体外受精率显著低于体外培养的排出第一极体的卵母细胞(P2 - cell < 0-05,P受精<0-05)  相似文献   

10.
本实验利用猪卵母细胞体外无血清培养技术,选用猪卵泡液中自然存在的次黄嘌呤(HX)作为卵母细胞自发成熟的抑制剂,研究了促性腺激素对猪卵丘细胞-卵母细胞复合体(CEO)减数分裂恢复的具体作用。CEO在含有不同浓度的促性腺激素(FSH,hCG,FSH+hCG)的培养液中培养24h,观察卵母细胞减数分裂恢复(GVBD)情况。实验结果如下:1.FSH(1-500IU/L)能够明显刺激CEO克服HX的抑制作用而恢复减数分裂(P<0.05),该作用具有剂量依赖性;2.hCG(1-500IU/L)对CEO减数分裂的恢复无明显作用;3.hCG(10-500IU/L)与FSH(10,100IU/L)无协同作用。上述结果表明,猪CEO减数分裂的恢复可能主要依赖于FSH的作用,该作用能使猪卵丘细胞产生一种或几种阳性因子,作用于卵母细胞,从而克服HX的抑制作用而恢复减数分裂。hCG无明显作用,可能是因为卵丘细胞上没有LH受体或LH受体的数量不足  相似文献   

11.
The efficacy of follicle-stimulating hormone (FSH), epidermal growth factor (EGF), and dibutyryl cGMP (dbcGMP) as inducers of germinal vesicle breakdown (GVBD) in cumulus cell-enclosed mouse oocytes was examined when meiotic arrest was maintained in vitro with purines, dibutyryl cAMP (dbcAMP), or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). When FSH was added to hypoxanthine (HX)-containing medium, the effect on oocyte maturation was at first inhibitory and later stimulatory. EGF stimulated GVBD at all time points tested. FSH and EGF also induced GVBD when oocytes were arrested with dbcAMP, IBMX, or guanosine. Dibutyryl cGMP stimulated GVBD when meiotic arrest was maintained with HX, but not when oocytes were meiotically arrested with guanosine, and was inhibitory in dbcAMP-supplemented medium. FSH and dbcGMP produced a transient delay of oocyte maturation in control medium, but the FSH effect was much more pronounced. EGF had no effect on maturation kinetics. The actions of FSH and EGF required the presence of cumulus cells. Both agents significantly stimulated cAMP production in oocyte-cumulus cell complexes. A brief exposure of complexes to a high concentration of dbcAMP induced GVBD, suggesting that FSH and EGF may act via a cAMP-dependent process. The frequency of FSH- and EGF-induced GVBD in cumulus cell-enclosed oocytes was significantly higher than the frequency of GVBD when oocytes were cultured while denuded of cumulus cells. of maturation is apparently not mediated solely by oocyte-cumulus cell uncoupling and termination of the transfer of an inhibitory meiotic signal from cumulus cells to the oocyte. The data suggest the generation of a positive signal within cumulus cells in response to hormone treatment that acts upon the oocyte to stimulate GVBD in the continued presence of inhibitory factors.  相似文献   

12.
Although it has been shown that granulosa cells regulate the growth and meiotic maturation of mammalian oocytes, there is little evidence of a role for the oocyte in the differentiation or function of granulosa cells. To test the hypothesis that the oocyte participates in the regulation of granulosa cell function, oocytes were removed from isolated oocyte-cumulus cell complexes by a microsurgical procedure and oocytectomized complexes were tested for their ability to undergo expansion in response to follicle-stimulating hormone (FSH). FSH increased the levels of intracellular cAMP, the activity of the hyaluronic acid-synthesizing enzyme system, and induced cumulus expansion in intact complexes. In contrast, FSH did not induce increased hyaluronic acid-synthesizing enzyme activity or cumulus expansion in oocytectomized complexes. Therefore, the participation of the oocyte is necessary for the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in vitro in response to stimulation with FSH. FSH induced the elevation of intracellular cAMP to the same extent in both intact and oocytectomized complexes and the cAMP analog 8-bromo cyclic adenosine monophosphate (8Br-cAMP) did not stimulate expansion in oocytectomized complexes. Therefore, the influence of the oocyte on cumulus expansion occurs downstream from the elevation of cAMP levels in the cumulus cells. Epidermal growth factor (EGF), a potent stimulator of cumulus expansion in intact complexes, which probably acts by a mechanism at least initially different from FSH, failed to stimulate cumulus expansion after oocytectomy. Next, oocytectomized complexes were either cocultured with germinal vesicle stage denuded oocytes or cultured in medium conditioned by denuded oocytes. In both cases, FSH or EGF stimulated expansion by oocytectomized complexes. The degree of expansion was directly correlated to the number of oocytes used to condition the medium. Contact between the oocyte and the cumulus cells is not necessary for cumulus expansion. Rather, a factor(s) secreted by the oocyte is necessary for the cumulus cells to undergo expansion in response to either FSH or EGF. FSH did not induce expansion of oocytectomized complexes in media conditioned by various somatic cells such as granulosa cells, fibroblasts, and Sertoli cells; by a mixed population of male germ cells; or by spermatozoa. This suggests that the expansion enabling activity is specific to the oocyte. These results demonstrate that the oocyte participates in the regulation of cumulus cell function.  相似文献   

13.
The hypothesis that cumulus cells inhibit oocyte maturation by a cAMP-dependent process was tested (R. M. Schultz, R. Montgomery, P. F. Ward-Bailey, and J. J. Eppig (1983). Dev. Biol.95, 294–304.). Treatment of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) resulted in a dose-dependent increase in both cumulus cell cAMP levels and in the extent of inhibition of germinal vesicle breakdown (GVBD), the first morphological manifestation of oocyte maturation. Furthermore, it was found that concentrations of a membrane-permeable analog of cAMP, dibutyryl cAMP (dbcAMP), that were below those required for complete meiotic inhibition had a greater inhibitory effect on cumulus cell-enclosed oocytes than on denuded oocytes. Cumulus cell-enclosed and denuded oocytes matured at the same time in the absence of dbcAMP. Ablation of the gap junctions that couple cumulus cells to the oocyte abolished the maturation-inhibitory action of cumulus cells that was promoted either by FSH or low concentrations of dbcAMP. These results are consistent with the hypothesis that inhibition of oocyte maturation is mediated by a factor of granulosa/cumulus cell origin, other than cAMP, which requires cAMP for its activity and/or generation, and an intact intercellular coupling pathway between cumulus cells and the oocyte. A variety of steroid hormones potentiated the FSH-induced inhibition of maturation in cumulus cell-enclosed oocytes. In addition, steroid hormones inhibited maturation in denuded oocytes, but only when oocyte cAMP levels were elevated by cAMP analogs or forskolin. Steroids alone did not inhibit maturation of either cumulus cell-enclosed or denuded oocytes. Moreover, the steroids alone or in combination with FSH did not affect metabolic coupling between the cumulus cells and oocytes, nor did testosterone affect the forskolin-induced level of cAMP in denuded oocytes. Therefore, it is proposed that the oocyte is a site for the synergistic activity of steroid hormones with a cAMP-dependent process in inhibiting maturation. Results of these studies are discussed in terms of the roles of intercellular communication, cAMP, a putative maturation-inhibiting factor, and steroid hormones in the inhibition of maturation of mouse oocytes.  相似文献   

14.
夏国良 《动物学报》1996,42(4):408-413
实验研究了小鼠卵母细胞体外过程中卵丘-卵母细胞间的相互作用。实验小鼠为雌性B6D2杂交一代。激素处理48小时后分离出卵后天和卵母细胞复合体,并培养在含有次黄嘌呤的培养液中。24小时后检查卵母细胞核成熟情况。  相似文献   

15.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

16.
The present study was undertaken to examine effects of various combinations of epidermal growth factor (EGF), transforming growth factor-b?1 (TGF-b?1), follicle-stimulating hormone (FSH), luteinizing hormone (LH), androstenedione (A4), and estradiol-17b? (E2) on meiotic maturation and cumulus expansion in the pig using an in vitro model system. Oocyte-cumulus cell complexes (OCC) were cultured in the media containing the abovementioned agents for 24 hr and were observed for germinal vesicle breakdown (GVBD), indicative of initiation of meiotic maturation, and for expansion of their cumulus cells. Treatment with EGF significantly increased (P < 0.05) incidence of GVBD, with maximal stimulation occurring at 1 ng/ml (55% vs. 12% in the control). Concentrations of EGF as low as 100 pg/ml significantly stimulated GVBD over control (37% vs. 12%). Addition of EGF (1 ng/ml) and FSH (1.5 μg/ml) together and LH (2 μg/ml) and FSH (1.5 μg/ml) together resulted in significantly higher (P < 0.01) GVBD levels than were observed in response to EGF, FSH, or LH alone. Addition of E2 (1 μg/ml) had no effect by itself but significantly decreased the incidence of GVBD in the presence of FSH and of LH + FSH. Addition of A4 (1 μg/ml) significantly reduced the percentage of oocytes undergoing GVBD when added alone or with FSH. Although both EGF and LH stimulated cumulus expansion, FSH was more effective in stimulating cumulus expansion than EGF or LH. TGF-b?1 had no effect on GVBD or cumulus expansion. These studies indicate that these hormones may have differing roles in oocyte maturation and that their interactions may be part of an intricate system regulating the maturation of oocytes during follicular development in vivo. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Bovine oocytes are arrested at the prophase of first meiotic cell cycle. Meiosis resumes in oocytes of pre-ovulatory follicles upon LH surge. However, oocytes from secondary follicles spontaneously resume meiosis in the absence of hormones if removed from the follicle and cultured in vitro. The nature of meiotic arrestor in bovine follicles is poorly understood. In this study we investigated the role of cell-cell interactions between granulosa and cumulus cells and the oocyte in mediating maintenance of meiotic arrest by cAMP. We sorted oocytes as granulosa-cumulus oocyte complexes (GCOC) if surrounded with cumulus cells attached to a large granulosa investment or cumulus oocytes complexes (COC) if surrounded with cumulus cells only and investigated the role cAMP in maintenance of meiotic arrest in these oocytes under various conditions. In hormone- and serum-free medium both GCOC and COC enclosed oocytes resumed meiosis. When [cAMP](i) was elevated with addition of invasive adenylate cyclase (iAC) GCOC enclosed oocytes were maintained in the prophase with intact germinal vesicle (GV) while COC enclosed oocytes underwent GV breakdown (GVBD). iAC elevated [cAMP](i) in both types of oocytes to the same level. If oocytes were liberated from the cumulus and granulosa cells, they re-initiated meiosis in serum and hormone free medium, but remained in the GV stage if iAC was added to the medium. Untreated GCOC and COC enclosed oocytes extruded first polar body at the same frequency in hormone-supplemented media. GCOC and COC enclosed oocytes but not denuded oocytes (DO) cultured without somatic cells acquired developmental competence if cultured in hormone-containing medium. It is concluded that maintenance of meiotic arrest is regulated by the interplay of [cAMP](i), and cumulus and granulosa cells.  相似文献   

18.
Cytochrome P450 lanosterol 14alpha-demethylase (CYP51) is a key enzyme in sterols and steroids biosynthesis that can induce meiotic resumption in mouse oocytes. The present study investigated the expression mechanism and function of CYP51 during FSH-induced mouse cumulus oocyte complexes (COCs) meiotic resumption. FSH increased cAMP-dependent protein kinase (PKA) RIIbeta level and induced cAMP response element-binding protein (CREB) phosphorylation and CYP51 expression in cumulus cells before oocyte meiotic resumption. Moreover, CYP51 and epidermal growth factor (EGF)-like factor [amphiregulin (AR)] expression were blocked by (2)-naphthol-AS-Ephosphate (KG-501) (a drug interrupting the formation of CREB functional complex). KG-501 and RS21607 (a specific inhibitor of CYP51 activity) inhibited oocyte meiotic resumption, which can be partially rescued by progesterone. These two inhibitors also inhibited FSH-induced MAPK phosphorylation. EGF could rescue the suppression by KG-501 but not RS21607. Furthermore, type II PKA analog pairs, N(6)-monobutyryl-cAMP plus 8-bromo-cAMP, increased PKA RIIbeta level and mimicked the action of FSH, including CREB phosphorylation, AR and CYP51 expression, MAPK activation, and oocyte maturation. All these data suggest that CYP51 plays a critical role in FSH-induced meiotic resumption of mouse oocytes. CYP51 and AR gene expression in cumulus cells are triggered by FSH via a type II PKA/CREB-dependent signal pathway. Our study also implicates that CYP51 activity in cumulus cells participates in EGF receptor signaling-regulated oocyte meiotic resumption.  相似文献   

19.
Successful development of mammalian oocytes requires correct interactions between developing oocytes and associated granulosa cells. Development of oocyte-granulosa cell complexes from preantral follicles in vitro does not produce oocytes competent to develop to blastocysts at the same frequency as for oocytes that develop in vivo. Addition of either FSH or insulin to cultures of oocyte-granulosa cell complexes does not improve the frequency of blastocyst development, and the combination of both insulin and FSH is deleterious. Here, high-resolution 2-dimensional PAGE (2D-PAGE) and computerized gel image analysis were used to compare patterns of protein synthesis in cumulus cells and mural granulosa cells of small antral follicles, and then to assess effects of FSH and insulin on the differentiation of oocyte-associated granulosa cells (OAGCs) in vitro. Culture of OAGCs without FSH or insulin resulted in failure to synthesize many proteins at rates characteristic of cumulus cells. Either hormone used alone caused many cumulus cell proteins that were decreased in control cultures to be synthesized at nearly normal cumulus cell rates, and also caused the synthesis of other proteins to be increased or decreased. The two hormones added together produced the greatest change in protein synthetic pattern, including overexpression or underexpression of many proteins not affected by either hormone alone. Addition of these hormones to culture media thus appeared insufficient to elicit a normal cumulus cell phenotype in OAGCs and could lead to complex changes in protein synthesis that may be deleterious to oocyte development. The high-resolution 2D-PAGE approach described here should be a valuable tool in studies on oocyte and granulosa cell development in vitro, since phenotype can be evaluated globally through the display of over 1000 newly synthesized proteins rather than relying upon the expression of just a few genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号