首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354843篇
  免费   38928篇
  国内免费   1755篇
  2019年   3371篇
  2018年   4359篇
  2017年   3766篇
  2016年   5283篇
  2015年   7361篇
  2014年   8717篇
  2013年   11592篇
  2012年   13007篇
  2011年   12805篇
  2010年   8501篇
  2009年   7455篇
  2008年   10434篇
  2007年   10609篇
  2006年   9882篇
  2005年   9305篇
  2004年   9149篇
  2003年   8757篇
  2002年   8499篇
  2001年   14865篇
  2000年   14814篇
  1999年   11958篇
  1998年   4206篇
  1997年   4312篇
  1996年   4089篇
  1995年   4084篇
  1994年   4094篇
  1993年   3912篇
  1992年   10071篇
  1991年   9583篇
  1990年   9379篇
  1989年   9096篇
  1988年   8449篇
  1987年   8070篇
  1986年   7284篇
  1985年   7380篇
  1984年   6086篇
  1983年   5338篇
  1982年   4192篇
  1981年   3691篇
  1980年   3510篇
  1979年   6095篇
  1978年   4543篇
  1977年   4269篇
  1976年   3963篇
  1975年   4294篇
  1974年   4651篇
  1973年   4709篇
  1972年   4352篇
  1971年   4065篇
  1970年   3435篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Unequal absorption of photons between photosystems I and II, and between bundle-sheath and mesophyll cells, are likely to affect the efficiency of the CO2-concentrating mechanism in C4 plants. Under steady-state conditions, it is expected that the biochemical distribution of energy (ATP and NADPH) and photosynthetic metabolite concentrations will adjust to maintain the efficiency of C4 photosynthesis through the coordination of the C3 (Calvin-Benson-Bassham) and C4 (CO2 pump) cycles. However, under transient conditions, changes in light quality will likely alter the coordination of the C3 and C4 cycles, influencing rates of CO2 assimilation and decreasing the efficiency of the CO2-concentrating mechanism. To test these hypotheses, we measured leaf gas exchange, leaf discrimination, chlorophyll fluorescence, electrochromatic shift, photosynthetic metabolite pools, and chloroplast movement in maize (Zea mays) and Miscanthus × giganteus following transitional changes in light quality. In both species, the rate of net CO2 assimilation responded quickly to changes in light treatments, with lower rates of net CO2 assimilation under blue light compared with red, green, and blue light, red light, and green light. Under steady state, the efficiency of CO2-concentrating mechanisms was similar; however, transient changes affected the coordination of C3 and C4 cycles in M. giganteus but to a lesser extent in maize. The species differences in the ability to coordinate the activities of C3 and C4 cycles appear to be related to differences in the response of cyclic electron flux around photosystem I and potentially chloroplast rearrangement in response to changes in light quality.The CO2-concentrating mechanism in C4 plants reduces the carbon lost through the photorespiratory pathway by limiting the oxygenation of ribulose-1,5-bisphosphate (RuBP) by the enzyme Rubisco (Brown and Smith, 1972; Sage, 1999). Through the compartmentalization of the C4 cycle in the mesophyll cells and the C3 cycle in the bundle-sheath cells (Hatch and Slack, 1966), C4 plants suppress RuBP oxygenation by generating a high CO2 partial pressure around Rubisco (Furbank and Hatch, 1987). To maintain high photosynthetic rates and efficient light energy utilization, the metabolic flux through the C3 and C4 cycles must be coordinated. However, coordination of the C3 and C4 cycles is likely disrupted due to rapid changes in environmental conditions, particularly changes in light availability (Evans et al., 2007; Tazoe et al., 2008).Spatial and temporal variations in light environments, including both light quantity and quality, are expected to alter the coordination of the C3 and C4 cycles. For example, it has been suggested that the coordination of C3 and C4 cycles is altered by changes in light intensity (Henderson et al., 1992; Cousins et al., 2006; Tazoe et al., 2006, 2008; Kromdijk et al., 2008, 2010; Pengelly et al., 2010). However, more recent publications indicate that some of the proposed light sensitivity of the CO2-concentrating mechanisms in C4 plants can be attributed to oversimplifications of leaf models of carbon isotope discrimination (Δ13C), in particular, errors in estimates of bundle-sheath CO2 partial pressure and omissions of respiratory fractionation (Ubierna et al., 2011, 2013). Alternatively, there is little information on the effects of light quality on the coordination of C3 and C4 cycle activities and the subsequent impact on net rate of CO2 assimilation (Anet).In C3 plants, Anet is reduced under blue light compared with red or green light (Evans and Vogelmann, 2003; Loreto et al., 2009). This was attributed to differences in absorbance and wavelength-dependent differences in light penetration into leaves, where red and green light penetrate farther into leaves compared with blue light (Vogelmann and Evans, 2002; Evans and Vogelmann, 2003). Differences in light quality penetration into a leaf are likely to have profound impacts on C4 photosynthesis, because the C4 photosynthetic pathway requires the metabolic coordination of the mesophyll C4 cycle and the bundle-sheath C3 cycle. Indeed, Evans et al. (2007) observed a 50% reduction in the rate of CO2 assimilation in Flaveria bidentis under blue light relative to white light at a light intensity of 350 µmol quanta m−2 s−1. This was attributed to poor penetration of blue light into the bundle-sheath cells and subsequent insufficient production of ATP in the bundle-sheath cells to match the rates of mesophyll cell CO2 pumping (Evans et al., 2007). Recently, Sun et al. (2012) observed similar low rates of steady-state CO2 assimilation under blue light relative to red, green, and blue light (RGB), red light, and green light at a constant light intensity of 900 µmol quanta m−2 s−1.Because the light penetration into a leaf depends on light quality, with blue light penetrating the least, this potentially results in changes in the energy available for carboxylation reactions in the bundle-sheath (C3 cycle) and mesophyll (C4 cycle) cells. Changes in the balance of energy driving the C3 and C4 cycles can alter the efficiency of the CO2-concentrating mechanisms, often represented by leakiness (ϕ), the fraction of CO2 that is pumped into the bundle-sheath cells that subsequently leaks back out (Evans et al., 2007). Unfortunately, ϕ cannot be measured directly, but it can be estimated through the combined measured and modeled values of Δ13C (Farquhar, 1983). Using measurements of Δ13C, it has been demonstrated that under steady-state conditions, changes in light quality do not affect ϕ (Sun et al., 2012); however, it remains unknown if ϕ is also constant during the transitions between different light qualities. In fact, sudden changes of light quality could temporally alter the coordination of the C3 and C4 cycles.To understand the effects of light quality on C4 photosynthesis and the coordination of the activities of C3 and C4 cycles, we measured transitional changes in leaf gas exchange and Δ13C under RGB and broad-spectrum red, green, and blue light in the NADP-malic enzyme C4 plants maize (Zea mays) and Miscanthus × giganteus. Leaf gas exchange and Δ13C measurements were used to estimate ϕ using the complete model of C4 leaf Δ13C (Farquhar, 1983; Farquhar and Cernusak, 2012). Additionally, we measured photosynthetic metabolite pools, Rubisco activation state, chloroplast movement, and rates of linear versus cyclic electron flow during rapid transitions from red to blue light and blue to red light. We hypothesized that the limited penetration of blue light into the leaf would result in insufficient production of ATP in the bundle-sheath cells to match the rate of mesophyll cell CO2 pumping. We predicted that rapid changes in light quality would affect the coordination of the C3 and C4 cycles and cause an increase in ϕ, but this would equilibrate as leaf metabolism reached a new steady-state condition.  相似文献   
3.
4.
5.
Early environment influences later performance in fishes   总被引:1,自引:0,他引:1  
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life‐history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life‐history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.  相似文献   
6.
7.
Clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes constitute the adaptive immune system in bacteria and archaea. Although the CRISPR-Cas systems have been hypothesized to encode potential toxins, no experimental data supporting the hypothesis are available in the literature. In this work, we provide the first experimental evidence for the presence of a toxin gene in the type I-A CRISPR system of hyperthermophilic archaeon Sulfolobus. csa5, under the control of its native promoter in a shuttle vector, could not be transformed into CRISPR-deficient mutant Sulfolobus solfataricus Sens1, demonstrating a strong toxicity in the cells. A single-amino-acid mutation destroying the intersubunit bridge of Csa5 attenuated the toxicity, indicative of the importance of Csa5 oligomerization for its toxicity. In line with the absence of Csa5 toxicity in S. solfataricus InF1 containing functional CRISPR systems, the expression of csa5 is repressed in InF1 cells. Induced from the arabinose promoter in Sens1 cells, Csa5 oligomers resistant to 1% SDS co-occur with chromosome degradation and cell death, reinforcing the connection between Csa5 oligomerization and its toxicity. Importantly, a rudivirus was shown to induce Csa5 expression and the formation of SDS-resistant Csa5 oligomers in Sulfolobus cells. This demonstrates that the derepression of csa5 and the subsequent Csa5 oligomerization take place in native virus-host systems. Thus, csa5 is likely to act as a suicide gene under certain circumstances to inhibit virus spreading.  相似文献   
8.
9.
Single-stranded DNA binding proteins (SSBs) selectively bind single-stranded DNA (ssDNA) and facilitate recruitment of additional proteins and enzymes to their sites of action on DNA. SSB can also locally diffuse on ssDNA, which allows it to quickly reposition itself while remaining bound to ssDNA. In this work, we used a hybrid instrument that combines single-molecule fluorescence and force spectroscopy to directly visualize the movement of Escherichia coli SSB on long polymeric ssDNA. Long ssDNA was synthesized without secondary structure that can hinder quantitative analysis of SSB movement. The apparent diffusion coefficient of E. coli SSB thus determined ranged from 70,000 to 170,000 nt2/s, which is at least 600 times higher than that determined from SSB diffusion on short ssDNA oligomers, and is within the range of values reported for protein diffusion on double-stranded DNA. Our work suggests that SSB can also migrate via a long-range intersegment transfer on long ssDNA. The force dependence of SSB movement on ssDNA further supports this interpretation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号