首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以序列相似性低于40%的1895条蛋白质序列构建涵盖27个折叠类型的蛋白质折叠子数据库,从蛋白质序列出发,用模体频数值、低频功率谱密度值、氨基酸组分、预测的二级结构信息和自相关函数值构成组合向量表示蛋白质序列信息,采用支持向量机算法,基于整体分类策略,对27类蛋白质折叠子的折叠类型进行预测,独立检验的预测精度达到了66.67%。同时,以同样的特征参数和算法对27类折叠子的4个结构类型进行了预测,独立检验的预测精度达到了89.24%。将同样的方法用于前人使用过的27类折叠子数据库,得到了好于前人的预测结果。  相似文献   

2.
使用图像特征构建快速有效的蛋白质折叠识别方法   总被引:2,自引:0,他引:2  
蛋白质结构自动分类是探索蛋白质结构- 功能关系的一种重要研究手段。首先将蛋白质折叠子三维空间结构映射成为二维距离矩阵,并将距离矩阵视作灰度图像。然后基于灰度直方图和灰度共生矩阵提出了一种计算简单的折叠子结构特征提取方法,得到了低维且能够反映折叠结构特点的特征,并进一步阐明了直方图中零灰度孤峰形成原因,深入分析了共生矩阵特征中灰度分布、不同角度和像素距离对应的结构意义。最后应用于27类折叠子分类,对独立集测试的精度达到了71.95 %,对所有数据进行10 交叉验证的精度为78.94 %。与多个基于序列和结构的折叠识别方法的对比结果表明,此方法不仅具有低维和简洁的特征,而且无需复杂的分类系统,能够有效和高效地实现多类折叠子识别。  相似文献   

3.
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测.选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较.对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法.其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法.  相似文献   

4.
依据蛋白质折叠子中氨基酸保守性,以氨基酸、氨基酸的极性、氨基酸的电性以及氨基酸的亲—疏水性为参数,从蛋白质的氨基酸序列出发,采用"一对多"的分类策略,通过构建打分矩阵和选取氨基酸序列模式片断,利用5种相似性打分函数对27类折叠子进行识别,最好的预测精度达到83.46%。结果表明,打分矩阵是预测多类蛋白质折叠子有效的方法。  相似文献   

5.
基于氨基酸组成分布的蛋白质同源寡聚体分类研究   总被引:7,自引:0,他引:7  
基于一种新的特征提取方法——氨基酸组成分布,使用支持向量机作为成员分类器,采用“一对一”的多类分类策略,从蛋白质一级序列对四类同源寡聚体进行分类研究。结果表明,在10-CV检验下,基于氨基酸组成分布,其总分类精度和精度指数分别达到了86.22%和67.12%,比基于氨基酸组成成分的传统特征提取方法分别提高了5.74和10.03个百分点,比二肽组成成分特征提取方法分别提高了3.12和5.63个百分点,说明氨基酸组成分布对于蛋白质同源寡聚体分类是一种非常有效的特征提取方法;将氨基酸组成分布和蛋白质序列长度特征组合,其总分类精度和精度指数分别达到了86.35%和67.23%,说明蛋白质序列长度特征含有一定的空间结构信息。  相似文献   

6.
基于支持向量机的蛋白质同源寡聚体分类研究   总被引:14,自引:1,他引:13  
基于支持向量机和贝叶斯方法,从蛋白质一级序列出发对蛋白质同源二聚体、同源三聚体、同源四聚体、同源六聚体进行分类研究,结果表明:基于支持向量机, 采用“一对多”和“一对一”策略, 其分类总精度分别为77.36%和93.43%, 分别比基于贝叶斯协方差判别法的分类总精度50.64%提高26.72和42.79个百分点.从而说明支持向量机可用于蛋白质同源寡聚体分类,且是一种非常有效的方法.对于多类蛋白质同源寡聚体分类,基于相同的机器学习方法(如支持向量机),采用“一对一”策略比“一对多”效果好.同时亦表明蛋白质同源寡聚体一级序列包含四级结构信息.  相似文献   

7.
基于多个结构域联合作用导致蛋白质间相互作用的假设,提出了一种预测蛋白质间相互作用的新方法。使用支持向量机分析结构域组合对序列的氨基酸理化性质得到其序列特征值,同时采用统计分析的方法获取其频率特征值,最后通过融合上述两种特征估计该结构域组合间发生相互作用的可能性,并以此预测蛋白质间相互作用关系。该方法能够预测所有结构域组合间相互作用关系,且对于蛋白质相互作用关系有着较好的预测效果。  相似文献   

8.
目的:基于支持向量机建立一个自动化识别新肽链四级结构的方法,提高现有方法的识别精度.方法:改进4种已有的蛋白质一级序列特征值提取方法,采用线性和非线性组合预测方法建立一个有效的组合预测模型.结果:以同源二聚体及非同源二聚体为例.对4种特征值提取方法进行改进后其分类精度均提升了2~3%;进一步实施线性与非线性组合预测后,其分类精度再次提高了2~3%,使独立测试集的分类精度达到了90%以上.结论:4种特征值提取方法均较好地反应出蛋白质一级序列包含四级结构信息,组合预测方法能有效地集多种特征值提取方法优势于一体.  相似文献   

9.
基于支持向量机方法的蛋白可溶性预测   总被引:1,自引:0,他引:1  
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测。选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较。对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法。其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法。  相似文献   

10.
基于模糊支持向量机的膜蛋白折叠类型预测   总被引:1,自引:0,他引:1  
现有的基于支持向量机(support vector machine,SVM)来预测膜蛋白折叠类型的方法.利用的蛋白质序列特征并不充分.并且在处理多类蛋白质分类问题时存在不可分区域,针对这两类问题.提取蛋白质序列的氨基酸和二肽组成特征,并计算加权的多阶氨基酸残基指数相关系数特征,将3类特征融和作为分类器的输入特征矢量.并采用模糊SVM(fuzzy SVM,FSVM)算法解决对传统SVM不可分数据的分类.在无冗余的数据集上测试结果显示.改进的特征提取方法在相同分类算法下预测性能优于已有的特征提取方法:FSVM在相同特征提取方法下性能优于传统的SVM.二者相结合的分类策略在独立性数据集测试下的预测精度达到96.6%.优于现有的多种预测方法.能够作为预测膜蛋白和其它蛋白质折叠类型的有效工具.  相似文献   

11.
MOTIVATION: Recognizing proteins that have similar tertiary structure is the key step of template-based protein structure prediction methods. Traditionally, a variety of alignment methods are used to identify similar folds, based on sequence similarity and sequence-structure compatibility. Although these methods are complementary, their integration has not been thoroughly exploited. Statistical machine learning methods provide tools for integrating multiple features, but so far these methods have been used primarily for protein and fold classification, rather than addressing the retrieval problem of fold recognition-finding a proper template for a given query protein. RESULTS: Here we present a two-stage machine learning, information retrieval, approach to fold recognition. First, we use alignment methods to derive pairwise similarity features for query-template protein pairs. We also use global profile-profile alignments in combination with predicted secondary structure, relative solvent accessibility, contact map and beta-strand pairing to extract pairwise structural compatibility features. Second, we apply support vector machines to these features to predict the structural relevance (i.e. in the same fold or not) of the query-template pairs. For each query, the continuous relevance scores are used to rank the templates. The FOLDpro approach is modular, scalable and effective. Compared with 11 other fold recognition methods, FOLDpro yields the best results in almost all standard categories on a comprehensive benchmark dataset. Using predictions of the top-ranked template, the sensitivity is approximately 85, 56, and 27% at the family, superfamily and fold levels respectively. Using the 5 top-ranked templates, the sensitivity increases to 90, 70, and 48%.  相似文献   

12.
New peptide encoding schemes are proposed to use with support vector machines for the direct recognition of T cell epitopes. The methods enable the presentation of information on (1) amino acid positions in peptides, (2) neighboring side chain interactions, and (3) the similarity between amino acids through a BLOSUM matrix. A procedure of feature selection is also introduced to strengthen the prediction. The computational results demonstrate competitive performance over previous techniques.  相似文献   

13.

Background  

Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems.  相似文献   

14.
15.
16.
MOTIVATION: Protein remote homology detection is a central problem in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences are modeled and on the method used to compute the kernel function between them. RESULTS: We introduce two classes of kernel functions that are constructed by combining sequence profiles with new and existing approaches for determining the similarity between pairs of protein sequences. These kernels are constructed directly from these explicit protein similarity measures and employ effective profile-to-profile scoring schemes for measuring the similarity between pairs of proteins. Experiments with remote homology detection and fold recognition problems show that these kernels are capable of producing results that are substantially better than those produced by all of the existing state-of-the-art SVM-based methods. In addition, the experiments show that these kernels, even when used in the absence of profiles, produce results that are better than those produced by existing non-profile-based schemes. AVAILABILITY: The programs for computing the various kernel functions are available on request from the authors.  相似文献   

17.
Development of novel statistical potentials for protein fold recognition   总被引:5,自引:0,他引:5  
The need to perform large-scale studies of protein fold recognition, structure prediction and protein-protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.  相似文献   

18.
Xu Z  Zhang C  Liu S  Zhou Y 《Proteins》2006,63(4):961-966
Solvent accessibility, one of the key properties of amino acid residues in proteins, can be used to assist protein structure prediction. Various approaches such as neural network, support vector machines, probability profiles, information theory, Bayesian theory, logistic function, and multiple linear regression have been developed for solvent accessibility prediction. In this article, a much simpler quadratic programming method based on the buriability parameter set of amino acid residues is developed. The new method, called QBES (Quadratic programming and Buriability Energy function for Solvent accessibility prediction), is reasonably accurate for predicting the real value of solvent accessibility. By using a dataset of 30 proteins to optimize three parameters, the average correlation coefficients between the predicted and actual solvent accessibility are about 0.5 for all four independent test sets ranging from 126 to 513 proteins. The method is efficient. It takes only 20 min for a regular PC to obtain results of 30 proteins with an average length of 263 amino acids. Although the proposed method is less accurate than a few more sophisticated methods based on neural network or support vector machines, this is the first attempt to predict solvent accessibility by energy optimization with constraints. Possible improvements and other applications of the method are discussed.  相似文献   

19.
Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.  相似文献   

20.
A computational method for NMR-constrained protein threading.   总被引:2,自引:0,他引:2  
Protein threading provides an effective method for fold recognition and backbone structure prediction. But its application is currently limited due to its level of prediction accuracy and scope of applicability. One way to significantly improve its usefulness is through the incorporation of underconstrained (or partial) NMR data. It is well known that the NMR method for protein structure determination applies only to small proteins and that its effectiveness decreases rapidly as the protein mass increases beyond about 30 kD. We present, in this paper, a computational framework for applying underconstrained NMR data (that alone are insufficient for structure determination) as constraints in protein threading and also in all-atom model construction. In this study, we consider both secondary structure assignments from chemical shifts and NOE distance restraints. Our results have shown that both secondary structure assignments and a small number of long-range NOEs can significantly improve the threading quality in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from homologs to analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a great amount of structural information, equivalent to that provided by many NMR data; and hence can help reduce the number of NMR data typically required for an accurate structure determination. This new technique can potentially accelerate current NMR structure determination processes and possibly expand NMR's capability to larger proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号