首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测.选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较.对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法.其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法.  相似文献   

2.
基于模糊支持向量机的膜蛋白折叠类型预测   总被引:1,自引:0,他引:1  
现有的基于支持向量机(support vector machine,SVM)来预测膜蛋白折叠类型的方法.利用的蛋白质序列特征并不充分.并且在处理多类蛋白质分类问题时存在不可分区域,针对这两类问题.提取蛋白质序列的氨基酸和二肽组成特征,并计算加权的多阶氨基酸残基指数相关系数特征,将3类特征融和作为分类器的输入特征矢量.并采用模糊SVM(fuzzy SVM,FSVM)算法解决对传统SVM不可分数据的分类.在无冗余的数据集上测试结果显示.改进的特征提取方法在相同分类算法下预测性能优于已有的特征提取方法:FSVM在相同特征提取方法下性能优于传统的SVM.二者相结合的分类策略在独立性数据集测试下的预测精度达到96.6%.优于现有的多种预测方法.能够作为预测膜蛋白和其它蛋白质折叠类型的有效工具.  相似文献   

3.
基于支持向量机和贝叶斯方法的蛋白质四级结构分类研究   总被引:6,自引:2,他引:4  
用支持向量机和贝叶斯两种方法对蛋白质四级结构进行分类研究。结果表明,基于支持向量机的分类结果最好,其l0CV检验的总分类精度、正样本正确预测率、Matthes相关系数和假阳性率分别为74.2%、84.6%、0.474、38.9%;基于贝叶斯的分类结果没有支持向量机的分类结果好,但其l0CV检验的假阳性率最低(15.9%).这些结果说明同源寡聚蛋白质一级序列包含四级结构信息,同时特征向量的确表示了埋藏在缔合亚基作用部位接触表面的基本信息。  相似文献   

4.
邹凌云  王正志  黄教民 《遗传学报》2007,34(12):1080-1087
蛋白质必须处于正确的亚细胞位置才能行使其功能。文章利用PSI-BLAST工具搜索蛋白质序列,提取位点特异性谱中的位点特异性得分矩阵作为蛋白质的一类特征,并计算4等分序列的氨基酸含量以及1~7阶二肽含量作为另外两类特征,由这三类特征一共得到蛋白质序列的12个特征向量。通过设计一个简单加权函数对各类特征向量加权处理,作为神经网络预测器的输入,并使用Levenberg-Marquardt算法代替传统的EBP算法来调整网络权值和阈值,大大提高了训练速度。对具有4类亚细胞位置和12类亚细胞位置的两种蛋白质数据集分别进行"留一法"测试和5倍交叉验证测试,总体预测精度分别达到88.4%和83.3%。其中,对4类亚细胞位置数据集的预测效果优于普通BP神经网络、隐马尔可夫模型、模糊K邻近等预测方法,对12类亚细胞位置数据集的预测效果优于支持向量机分类方法。最后还对三类特征采取不同加权比例对预测精度的影响进行了讨论,对选择的八种加权比例的预测结果表明,分别给予三类特征合适的权值系数可以进一步提高预测精度。  相似文献   

5.
组建一个分两个阶段的分类器来进行蛋白质二级结构预测。第一阶段由支持向量机分类器组成,在第二阶段中使用第一阶段已预测的结果来进行贝叶斯判别。预测性能的改进表明了结合支持向量机和贝叶斯方法预测性能优越于单独使用支持向量机的预测性能。同时也证明残基在形成二级结构时是相互影响的。  相似文献   

6.
基于已知的人类PolII启动子序列数据,综合选取启动子序列内容和序列信号特征,构建启动子的支持向量机分类器.分别以启动子序列的6-mer频数作为离散源参数构建序列内容特征。同时选取24个位点的3-mer频数作为序列信号特征构建PWM,将所得到的两类参数输入支持向量机对人类启动子进行预测.用10折叠交叉检验和独立数据集来衡量算法的预测能力,相关系数指标达到95%以上,结果显示结合了支持向量机的离散增量算法能够有效的提高预测成功率,是进行真核生物启动子预测的一种很有效的方法.  相似文献   

7.
氨基酸突变扫描实验揭示了在蛋白质相互作用的结合过程中大部分的结合自由能是由极少数热点残基贡献的,通常定义结合自由能变化△△G≥2.0 kcal/mol的蛋白质残基为热点残基。热点残基对蛋白质相互作用具有重要意义。因此,如何有效进行热点残基的预测,仍然是一个研究课题。综合蛋白质氨基酸理化属性的加权疏水性、加权残基接触数、结构属性溶剂可接近面积和残基突出指数等特征,提出利用机器学习支持向量机算法来预测热点残基的方法。所提方法在丙氨酸热力学数据库数据和结合界面数据库选定的数据集上有很好的效果。在一定程度上对以后的研究发展有所帮助。  相似文献   

8.
从蛋白质序列出发,对经Dr.G.P.S.Raghava整理和使用过的168条非冗余的ATP与蛋白质结合氨基酸序列进行分段,对ATP与蛋白质结合位点进行了统计分析。在此基础上,利用20种氨基酸的亲疏水性将20种氨基酸约化为6类。以氨基酸组分和6类亲疏水紧邻为参数,用多样性增量(ID)方法将氨基酸组分和6类亲疏水紧邻降维并将降维后的特征参数输入支持向量机中运算,本文运算结果显示用氨基酸组分ID值和6类亲疏水紧邻ID值共同作为特征参数结果最优,在七交叉检验下的预测总精度达到了99.67%,相关系数达到0.9934,好于前人的预测结果。  相似文献   

9.
基于蛋白质序列,提出了一种新的超二级结构模体β-发夹的预测方法。利用离散增量构成的向量来表示序列信息,并将6个离散增量输入支持向量机,在六维向量空间中寻找最优超平面,将β-发夹和非β-发夹进行分类。计算结果表明,利用所设计的算法预测β-发夹,有较高的预测能力。对于训练集,5-交叉检验的预测总精度为81.24%,相关系数为0.57,β-发夹敏感性为83.06%;对于独立的检验集,预测总精度为78.34%,相关系数0.56,β-发夹敏感性为77.24%。将此预测模型应用于CASP6的63个蛋白质进行检验,得到较好结果。  相似文献   

10.
以序列相似性低于40%的1895条蛋白质序列构建涵盖27个折叠类型的蛋白质折叠子数据库,从蛋白质序列出发,用模体频数值、低频功率谱密度值、氨基酸组分、预测的二级结构信息和自相关函数值构成组合向量表示蛋白质序列信息,采用支持向量机算法,基于整体分类策略,对27类蛋白质折叠子的折叠类型进行预测,独立检验的预测精度达到了66.67%。同时,以同样的特征参数和算法对27类折叠子的4个结构类型进行了预测,独立检验的预测精度达到了89.24%。将同样的方法用于前人使用过的27类折叠子数据库,得到了好于前人的预测结果。  相似文献   

11.
MOTIVATION: The solvent accessibility of amino acid residues plays an important role in tertiary structure prediction, especially in the absence of significant sequence similarity of a query protein to those with known structures. The prediction of solvent accessibility is less accurate than secondary structure prediction in spite of improvements in recent researches. The k-nearest neighbor method, a simple but powerful classification algorithm, has never been applied to the prediction of solvent accessibility, although it has been used frequently for the classification of biological and medical data. RESULTS: We applied the fuzzy k-nearest neighbor method to the solvent accessibility prediction, using PSI-BLAST profiles as feature vectors, and achieved high prediction accuracies. With leave-one-out cross-validation on the ASTRAL SCOP reference dataset constructed by sequence clustering, our method achieved 64.1% accuracy for a 3-state (buried/intermediate/exposed) prediction (thresholds of 9% for buried/intermediate and 36% for intermediate/exposed) and 86.7, 82.0, 79.0 and 78.5% accuracies for 2-state (buried/exposed) predictions (thresholds of each 0, 5, 16 and 25% for buried/exposed), respectively. Our method also showed slightly better accuracies than other methods by about 2-5% on the RS126 dataset and a benchmarking dataset with 229 proteins. AVAILABILITY: Program and datasets are available at http://biocom1.ssu.ac.kr/FKNNacc/ CONTACT: jul@ssu.ac.kr.  相似文献   

12.
Information on relative solvent accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with support vector machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities for the prediction. By using the position-specific scoring matrices (PSSMs) generated by PSI-BLAST, the two-stage SVM approach achieves accuracies up to 90.4% and 90.2% on the Manesh data set of 215 protein structures and the RS126 data set of 126 nonhomologous globular proteins, respectively, which are better than the highest published scores on both data sets to date. A Web server for protein RSA prediction using a two-stage SVM method has been developed and is available (http://birc.ntu.edu.sg/~pas0186457/rsa.html).  相似文献   

13.
The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.  相似文献   

14.
15.
Wang Y  Xue Z  Shen G  Xu J 《Amino acids》2008,35(2):295-302
Protein–RNA interactions play a key role in a number of biological processes such as protein synthesis, mRNA processing, assembly and function of ribosomes and eukaryotic spliceosomes. A reliable identification of RNA-binding sites in RNA-binding proteins is important for functional annotation and site-directed mutagenesis. We developed a novel method for the prediction of protein residues that interact with RNA using support vector machine (SVM) and position-specific scoring matrices (PSSMs). Two cases have been considered in the prediction of protein residues at RNA-binding surfaces. One is given the sequence information of a protein chain that is known to interact with RNA; the other is given the structural information. Thus, five different inputs have been tested. Coupled with PSI-BLAST profiles and predicted secondary structure, the present approach yields a Matthews correlation coefficient (MCC) of 0.432 by a 7-fold cross-validation, which is the best among all previous reported RNA-binding sites prediction methods. When given the structural information, we have obtained the MCC value of 0.457, with PSSMs, observed secondary structure and solvent accessibility information assigned by DSSP as input. A web server implementing the prediction method is available at the following URL: .  相似文献   

16.
The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far.  相似文献   

17.
Protein function classification via support vector machine approach   总被引:2,自引:0,他引:2  
Support vector machine (SVM) is introduced as a method for the classification of proteins into functionally distinguished classes. Studies are conducted on a number of protein classes including RNA-binding proteins; protein homodimers, proteins responsible for drug absorption, proteins involved in drug distribution and excretion, and drug metabolizing enzymes. Testing accuracy for the classification of these protein classes is found to be in the range of 84-96%. This suggests the usefulness of SVM in the classification of protein functional classes and its potential application in protein function prediction.  相似文献   

18.
19.
Improved method for predicting beta-turn using support vector machine   总被引:2,自引:0,他引:2  
MOTIVATION: Numerous methods for predicting beta-turns in proteins have been developed based on various computational schemes. Here, we introduce a new method of beta-turn prediction that uses the support vector machine (SVM) algorithm together with predicted secondary structure information. Various parameters from the SVM have been adjusted to achieve optimal prediction performance. RESULTS: The SVM method achieved excellent performance as measured by the Matthews correlation coefficient (MCC = 0.45) using a 7-fold cross validation on a database of 426 non-homologous protein chains. To our best knowledge, this MCC value is the highest achieved so far for predicting beta-turn. The overall prediction accuracy Qtotal was 77.3%, which is the best among the existing prediction methods. Among its unique attractive features, the present SVM method avoids overtraining and compresses information and provides a predicted reliability index.  相似文献   

20.
Wang JY  Lee HM  Ahmad S 《Proteins》2007,68(1):82-91
A number of methods for predicting levels of solvent accessibility or accessible surface area (ASA) of amino acid residues in proteins have been developed. These methods either predict regularly spaced states of relative solvent accessibility or an analogue real value indicating relative solvent accessibility. While discrete states of exposure can be easily obtained by post prediction assignment of thresholds to the predicted or computed real values of ASA, the reverse, that is, obtaining a real value from quantized states of predicted ASA, is not straightforward as a two-state prediction in such cases would give a large real valued errors. However, prediction of ASA into larger number of ASA states and then finding a corresponding scheme for real value prediction may be helpful in integrating the two approaches of ASA prediction. We report a novel method of obtaining numerical real values of solvent accessibility, using accumulation cutoff set and support vector machine. This so-called SVM-Cabins method first predicts discrete states of ASA of amino acid residues from their evolutionary profile and then maps the predicted states onto a real valued linear space by simple algebraic methods. Resulting performance of such a rigorous approach using 13-state ASA prediction is at least comparable with the best methods of ASA prediction reported so far. The mean absolute error in this method reaches the best performance of 15.1% on the tested data set of 502 proteins with a coefficient of correlation equal to 0.66. Since, the method starts with the prediction of discrete states of ASA and leads to real value predictions, performance of prediction in binary states and real values are simultaneously optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号