首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酶曾-度被认为只能在水介质中起催化作用,而有机溶剂则会使其失活。由于大量化学反应都是在有机深剂中进行的,使得酶催化在有机合成中的应用受到极大限制。近年来少研究表明,只要条件合适,酶催化在有机介质中也可进行[1.2],并已在实际应用中显示其优点,如肽的合成[3,4]、旋光性物质的合成[5,6]、不溶于水的化学物质的酶法分析[7]、酯和酯交换反应[8,9]、甾体氧化[10]、脱氢的应[10]、酚类聚合反应[12].与一般化学催化相比,生物催化剂(酶)除了催化效率高,反应秉公执法曙和外,它具有亚格的选择性。例如对反应的专一性,化学基团的选择性,位置的选择性和对映选择性,因此,酶催化物别适合那些一般化学方法难以实现的手性化合物的选择性转化[13,14].  相似文献   

2.
云南红豆杉培养细胞系的建立   总被引:10,自引:0,他引:10  
紫杉醇(Taxol)最初是从红豆杉属植物短叶红豆杉(Taxus brevifolia)树皮中分离出的一种二萜类化合物[1].对卵巢癌,转移性乳腺癌和恶性黑色寮瘤等患者疗效显著[2],全世界红豆杉属植物有近11种,都含紫杉醇成分.但含量很低,加之现存数量很少,生长极为缓慢.造成了紫杉醇原料供应的危机[3]。紫杉醇化学合成已经成功[4-6],但繁杂的反应过程及前体化合物来源的限制使得它们无法实现商业化生产。最近从短叶红豆杉中分离出一种生产紫杉醇的内寄生真菌Tgromyer andreanae[7].由于紫杉醇含量仅为24~50ng/L.没有实用价值。植物细胞和组织培养可能是解决天然抗肿瘤药物长期供应的有效方法之一[8]。自1991年Christen等人申请利用红豆杉细胞培养物生产紫杉醇专利以来[9].有关红豆杉细胞培养的研究已有不少报[10-12]。但云南红豆杉(T.yunnanensis)仅见愈伤组织诱导的报道[13]。本文报道云南红豆杉愈伤组织诱导和细胞培养的初步结果,并分析了细胞培养物中紫杉醇含量。  相似文献   

3.
体细胞胚胎发生已经成为许多植物细胞全能性得以实现的主要途径,黑麦也不例外。许多报道就外源生长素物质(2,4-D、Dicamba[1]、CPA[2]、Picloram[3])、细胞分裂素类(6-BA[4])以及ABA[5.6]等激素物质对体细胞胚胎发生的促进作用作了较为详细的论述。但是,阐明体细胞胚胎发生的内在原因,对这一技术的完善将具有更为实质性的意义。本试验正是基于这一思路,对黑麦体细胞胚胎发生过程中内源IAA和Zt的变化进行了初步研究。  相似文献   

4.
生黑醋菌可以将D-山梨醇转化为L-山梨塘,用微生物将D-山梨醇氧化为L-山梨糖是维生素C生产的一个重要部分,目前工业上用的都是游离菌批式生产工艺。由于固定化活细胞作为生物催化剂具有生产的连续性和稳定性.操作简便.产物易于分离纯化等优点[1],已有不少实验室研究甩固定化微生物细胞将D-山梨醇转化为L-山梨糖[1-6],国内也有用海藻酸固定化生黑醋菌Acetobacteriummelanogenum的报道[2,3]。用海藻酸钙[1-3]、聚丙烯酰胺[4]、铝处理的海藻酸钙[5]、水合聚丙烯酰胺与海藻酸钙混合固定化的微生物细胞[6]转化D-山梨醇成为L-山梨糖,都有因机械强度差,而不适合在搅拌式发酵罐中生产的弱点。聚乙烯醇制备的固定化微生物细胞具有机械强度好、类似于橡皮的弹性、成低等特性[7]。因此,我们选择聚乙烯醇作为固定化生黑醋菌的材料。  相似文献   

5.
基因效应分析已被广泛地应用于植物遗传学研究和植物育种工作中[3]。根据中心极限定理,在大样本情况下,可用正态分布对基因效应和尺度测验统计量进行显著性检验。当样本容量较小时,正态分布就不能用于上述显著性检验。一些作者[1,3,4,7]认为,在小样本情况下应当用t-统计量来进行上述检验,但实际上由于各世代间的总体方差不等,通常的t-统计量不能用于这种检验。  相似文献   

6.
固定化技术研究的新进展   总被引:2,自引:0,他引:2  
固定化生物催化剂的研究近一、二十年来发展非常迅速。它已由原来的单一固定化酶、固定化微生物细咆发展到动植物细胞、组织器官、微生物孢子[1]、细胞与酶[2]、好氧微生物与厌氧微生物[3]的混合固定化等,其应用研究巳涉及发酵、食品、化工、分析、医疗、生化、环境净化等各个领域[4],展示了广阔的发展前景。  相似文献   

7.
骨形成蛋白(Bone Morphogenetic Protein,BMP)是一类能诱导异位骨及软骨形成,并在动物的发育和分化中起作用的蛋白质[1,2,3]。自Urist及其同事发现骨形成蛋白以来4。已对8种人的BMP进行了克隆,除BMP-1外[5],BMP-2至BMP-8均与TGF-β家族相关,它们能诱导细胞分化,促进骨、软骨及牙本质的形成[1,6]。并在发育、分化和形成过程中起重要作用。最新的研究认为BMP-1是一种胶原蛋白酶[7],进一步揭示了BMP家族成员的生物学作用。人的BMP-3基因定位于第4染色体上,BMP-3蛋白由472个氨基酸组成,包括N端的信号肽、中间的前肽及C端的成熟肽三部分。BMP-3的C末端与MBP-2A及BMP-2B有49%的序列相同[5]。本实验室曾检测了BMP-3和BMP-5在不同 组织和细胞中的表达情况,发现它们在一些与骨形成无关的组织和细胞中均有表达,说明了BMP在动物和人中有着其他重要的作用[8]。在此基础上,我们对BMP-3进行了克隆及在大肠杆菌中高效表达BMP-3-GST融合蛋白,并用Western印迹证明了其活性。  相似文献   

8.
反胶团是表面活性剂溶解在非极性溶剂中形成的、围绕一个“水核”的纳米级聚集体。液液反胶团萃取蛋白质技术,因对目标物质选择性好、容量大和能保持其活性而得到广泛研究[1-9].在反胶团萃取蛋白质的研究中,多数作者采用单一表面活性剂AOT[2]或季胺盐[3]的反胶团体系。两种体系的共同弱点是:体系受离子强度、pH值等静电因素的影响大,直接影响萃取率,为了克服它们的不足,有人在AOT体系中加亲和试剂增强反胶团对蛋白质的亲和性[4],加磷酸类阴离子表面活性剂[5]、天然表面活性剂磷脂[6]等以增强体系的萃取性能e人在季胺盐的反胶团体系中加非离子表面活性剂作助剂提高蛋白质的萃取率[7],有人则反阴、阳和非离子表面活性剂混合形成反胶团提高某种酶的萃取容量[8],本文用中性磷氧萃取剂三烷基氧膦(TRPO)与阴离子表面活性剂琥珀二辛酯磺酸钠(AOT)混合溶解在异辛烷中形成反胶团萃取牛血红蛋白(BHb),比较AOT、TRPO及AOT三体系对牛血红蛋白(BHb)的萃取性能。  相似文献   

9.
P2-DNA即Phage 2型噬菌体的染色体DNA,是一条线状双股螺旋的DNA分子,分子量为2.2×107Da。有19个碱基的牯性末端.可以连接成环状[1].1970年Bertani L.E. 和 Bertani G分离纯化得到P2噬苗体并对其遗传学及理化特性进行了研究[2],发现它在DNA复制,溶源性的控制以及基因重组等方面与温和性λ菌体不同;1979年Saint R B 等和Westoo A等先后研究了P2-DNA的几种限制酶的切割图谱[3]。P2-DNA可望成为分子生物学研究的重要工具和实验材料。目前国内尚无这种材料.我们试图将少量的P2-DNA转染获得P2噬菌体,加以扩增纯化.抽提得到大量的P2-DNA。为分子克隆和限制酶的研究提供有实用价值的材料和研究工具。  相似文献   

10.
从红豆杉科红豆杉属植物如短叶红豆杉(Taxusbrevifolia)等的树皮或枝叶提取到的紫杉醇(Tax-ol)是一种具有强抗癌活性的二萜烯类化合物[1].作为一种治疗晚期卵巢癌、乳腺癌的新药已经在欧美等一些国家被批准上市,成为迄今从植物中提取的最有效的抗癌药之一[2].但由于紫杉树皮来提取紫杉醇的方法如紫杉醇的化学合成、半合成,从真菌中提取紫杉醇以及改善红豆杉的栽培措施等等均已取得了较大进展,但离实际应用还相差太远[5,6].而利用组织和细胞培养方法替代砍伐天然红豆杉树皮来提取紫杉醇,也已成为近几年来红豆杉研究的一个重要课题之一并已取得了较大进展[7].云南红豆杉(Taxus yunnanensis)主要分布于我国云南省,是分布于我国的主要品种之一,其含量在我国现有的几种红豆杉植物中属于较高的一种[3],在我国,近些年来亦有不少实验室在红豆杉细胞培养方面取得了较好的成绩,但文献报道的较少[8-10].本文报道利用云南红豆杉细胞培养方法来生产紫杉醇,以最终取代从天然来源的树皮和枝叶中提取的可能性,对云南红豆杉进行的愈伤组织的诱导和培养研究的进展。  相似文献   

11.
P16ink4是CDK(Cyclin Dependent Kinase)抑制蛋白家族中的一员,在细胞内特异性地与CDK4和CDK6结合,抑制Cyclin D1/CDK4 和 Cyclin D1/CDK6 功能,参与调控细胞G1期至s期的转换[1,2]。1994年,Kamh和Nobon等发现在多种肿瘤细胞株中。P16ink4基因存在突变[3,4]。进一步的研究表明多种原发性肿瘤,比如胰腺癌、食管癌、肺癌、头颈部鳞癌、膀胱癌、前列腺癌以及白血病等都发现存在P16ink4基因的突变[5-7].而且家族性黑色素瘤患者中该基因存在种系突变(Germline mutation)[8],表明该基因与黑色素瘤的发病有关。体外研究表明导入P16ink4基因表达裁体可抑制肿瘤细胞的增殖[9],并可抑制Ras引起的细胞增殖和转化[10],而突变的P16ink4则丧失了抑制Cyclin D/CDK的功能[11.12]。这些研究结果表明P16ink4基因可能是功能上非常重要的抑癌基因。为了研究该基因的功能。以及该基因突变与肿瘤发生、发展间的关系,我们克隆了P16ink4基因的cDNA编码序列。  相似文献   

12.
纤溶酶原激活剂(Plasminogen Activator,PA)对血液中蛋白水解酶的活性有重要的调节作用。纤溶酶原激活剂的抑制物(Plasminogen Activator Inhibitor,PAI)可物异地抑制PA(t-PA和u-PA),其作用迅速,是PA活性的重要调节因子。很多证据表明,PAI、Pat和体内许多生理反应有密节的关系,如炎症[1]、组织重塑[2]、肿瘤生长及恶性细胞的转移[3,4]等。目前已发现了四种类型的PAI,PAI-2是基中的一种,它可由人胎盘滋养层细胞合成,在孕妇血浆中大理存在[5].该蛋白具有两种形式:一种分子量为43~47kDa的非糖基化形式:另一种分子量为58~60kDa的糖基化形式[6,7].对其结构与功能深入的研究将有助于了解许多生于现象,但由于PAI-2基因在大肠杆菌和哺乳动物细胞中的表达都不理想,不能获得足够量的该活性蛋白,本文在以轩状病毒为载体在昆虫细胞中成功地表达了该基因。  相似文献   

13.
高产花色苷玫瑰茄细胞系的筛选   总被引:10,自引:0,他引:10  
杜金华  郭勇   《生物工程学报》1997,13(4):437-439
花色苷在植物中呈现粉红、红、紫红、紫等颜色,可以用作食品、药品及化妆品的着色剂,亦有药用价值。作为食品添加剂,颜色较合成色素自然,且安全无毒性。早在1987年,Mizukami[1]就建议用植物细胞培养物生产花色苷类代替合成色素。所有的植物培养细胞都是异源性的。各细胞之间产花色苷的能力相差很大[2].因为产花色苷的细胞系带有颜色标记,所以容易识别并通过肉眼选择即可获得高产花色苷的细胞系。筛选的方法很多,如平板饲喂法[3]、小细胞团法[4]、细胞块法[5]、肉眼观察直接挑选法及细胞分栋器法[6]等。高产系花色苷的含量可增加几倍到几十倍,而且产量稳定。本文采用平板法及小细胞团法筛选高产花色苷的玫瑰茄(Hibiscus sabdariffa L.)细胞系。  相似文献   

14.
蚯蚓纤溶酶是由日本宫崎医科大学的Mihara[1]于1982年从蚯蚓的肠和体液中发现的。由于蚯蚓纤溶酶有良好的溶解血检的作用,可以治疗一系列与血栓形成有关的疾病,因而在临床上有很大的应用价值[2],有可能成为一种新型的溶栓药物,继尿激酶、链激酶等之后应用于临床[4].关于蚯蚓纤溶酶的分离纯化,大多采用盐析、凝胶层析及离子交换层析等方法[2-6],也有人采用亲和层析的方法[7].本文以赤子爱胜蚓纤溶酶粗品为对象,对用反相色谱技术分离蚯蚓纤溶酶进行了初步尝试,现将结果报道如下。  相似文献   

15.
链霉菌中表达了透明颤菌血红蛋白(VHb),表明VHb对放线紫素的产生和菌体的生长有促进作用[2].pIJ702质粒上带有与次生代谢有关的酪氨酸酶基因(mel)[3],mel由ORF438启动子(PORF438)带动转录[4].本文尝试利用PORF4328表达vgb.  相似文献   

16.
[背景] 金属硒化物因其优异的光电和催化特性,近年来在半导体、电化学及抗癌等领域成为了研究热点。相较于传统的化学还原法,生物合成金属硒化物具有环境友好、耗能较低等优势。然而,目前有关生物合成金属硒化合物的微生物资源较少且相关合成机理尚不明晰。[目的] 利用马利亚霉菌(Mariannaea sp.) HJ合成了3种金属硒化物并对其合成机理进行了初步探索。[方法] 利用X射线衍射(X-Ray Diffraction,XRD)和傅里叶转换红外线光谱(Fourier Transform Infrared Spectroscopy,FTIR)对菌株HJ合成的金属硒化物进行了初步的表征,考察了纳米材料合成过程中总巯基含量、总抗氧化性能及自由基含量变化,并且验证了转运蛋白DMT1在金属硒化物合成中所起的关键性作用。[结果] XRD结果表明菌株HJ能够在Bi3+、Pb2+、Co2+与SeO32-作用下分别合成Bi4Se3、PbSe和CoSe2纳米颗粒,其合成的最优pH条件分别为6.0、7.0、8.0。FTIR结果表明,合成的金属硒化物表面含有氨基、羧基、羟基等官能团。3种金属硒化物的合成反应体系与空白对照组相比,总巯基含量明显下降,而总抗氧化性能却有所提高,这表明巯基等酶促体系或氨基酸金属蛋白类的非酶促体系可能参与了SeO32-的还原过程。苄基异硫脲盐酸盐屏蔽实验表明,转运蛋白DMT1在SeO32-转运和金属硒化物分泌过程中起到关键作用。此外,Bi3+、Pb2+和Co2+的加入使得菌株HJ产生氧化应激反应,在胞外分泌了大量的过氧化氢、羟基自由基和超氧自由基,而上述自由基可通过诱导热激效应的方式增强金属离子或纳米颗粒的转运过程。[结论] 利用马利亚霉菌(Mariannaeasp.) HJ合成了Bi4Se3、PbSe和CoSe2纳米颗粒,为研究金属硒化物的生物合成及机理提供了一定的理论参考。  相似文献   

17.
药物遗传学     
张贵寅 《遗传》1980,2(6):41-44
“药物遗传学,,(Pharmacogenetics)是药理学与遗 传学相结合发展起来的边缘学科。1957年Mostulsky 首先提出某些异常的药物反应与遗传缺陷有关的概 念[3]. 1959年Vogel正式创用“药物遗传学,,一词,迄 今只有20来年的历史[4]。近年来,随着有关学科的发 展,药物遗传学研究的对象和范围也在不断扩大。起 初,它仅研究机体的遗传因素对药物反应的影响,后来 发现有些遗传性疾病由于应用某些药物后引起病情加 剧,其它诸如药物相互作用的遗传学,药物诱变、致癌、 致畸的遗传学问题等,也成为药物遗传学研究的重要 内容。临床医生如能掌握药物遗传学的基本原理,就 可以根据机体的遗传特点合理用药,这样可以提高药 效,避免或减少由于遗传缺陷而引起的不良药物反 应。  相似文献   

18.
徐志彦 《遗传》1990,12(1):0
出芽的酵母菌— 酿酒酵母虽然是一种简单的真核生物,却具有丰富的发育过程的全部内容。弄清其发育的全过程,有助于推进细胞分化的研究。借助于经典遗传学和分子遗传学的理论和技术,迄今,对这个过程的一些主要事件,尤其对于转录的调节特性,以及在酵母菌生活周期的关键时期,即从成熟分裂产生单倍体抱子到二倍体细胞形成期间的调节特性,已经在分子水平上有了些了解[8]。本文主要就酵母菌转录调节的分子遗传学问题做些综合性介绍。  相似文献   

19.
甘蔗现有品种基本上都是远缘的种间杂种,杂合 程度很高。若能通过花药培养获得双单倍体植株,就 为获得甘蔗的纯系建立了极其有效的方法。甘蔗的纯 系不仅可用于遗传学研究,还可直接用于选配优良的 杂交组合,在甘蔗育种业中充分利用杂种优势,可大 大提高蔗糖的产量。甘蔗花药培养方法的建立为甘蔗 单倍体诱变开辟了广阔的前景,可使诱变育种效率大 大提高。美国在夏威夷进行了多年花药培养的研究[2], 菲律宾也进行了这方面的研究甘蔗现有品种基本上都是远缘的种间杂种,杂合 程度很高。若能通过花药培养获得双单倍体植株,就 为获得甘蔗的纯系建立了极其有效的方法。甘蔗的纯 系不仅可用于遗传学研究,还可直接用于选配优良的 杂交组合,在甘蔗育种业中充分利用杂种优势,可大 大提高蔗糖的产量。甘蔗花药培养方法的建立为甘蔗 单倍体诱变开辟了广阔的前景,可使诱变育种效率大 大提高。美国在夏威夷进行了多年花药培养的研究[2], 菲律宾也进行了这方面的研究[2],但仅得到来源于花 粉的多细胞球。我国台湾省曾进行了甘蔗花药培养的 研究,但尚未见获得花粉小植株的报道。,但仅得到来源于花 粉的多细胞球。我国台湾省曾进行了甘蔗花药培养的 研究,但尚未见获得花粉小植株的报道。  相似文献   

20.
胶源神经营养因子(Glialcellinederivedneurotrophicfactor,GDNF)是大鼠B49细胞系中分离纯化得到的一种蛋白质[1],由于其对多巴胺神经元的专一性的神经营养作用而被发现。GDNF成熟蛋白由134个氨基酸组成,具有两个N-糖基化位点。它属于TGF-β基因家族但与该家族其它成员的氨基酸序列同源性仅为20%,可能是一个新的亚家族。最近研究表明,它对发育中的运动神经元也有很强的神经营养作用[1]。对啮齿类[3,4],灵长类的弥猴[5]的活体试验表明,胶源神经营养因子是一种治疗神经退化发夹知病如帕金森氏症、肌萎缩性脊髓索硬化症等的非常有效的潜在药物。由于GDNF在体内含量极低而且公在发育早期表达,因而只有通过基因工程方法才能获得大量的GDNF。本文报道采用PCR方法从中国入基因组DNA 中扩增出编码GDNF的基因,并实现在大肠杆菌中的高效表达。这为进一步研究GDNF的结构和生物学功能打下了坚实的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号