首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
野生与栽培甘草不同部位甘草酸分布特点及其意义   总被引:1,自引:0,他引:1  
研究了乌拉尔甘草(Glycyrrhiza uralensis)不同部位的甘草酸分布特点及动态变化。野生及栽培甘草地下部分甘草酸含量较高,其中不定根中甘草酸含量与主根接近。野生甘草与栽培甘草地下部分甘草酸含量的月变化规律相似,且根茎中甘草酸含量比主根、不定根变化幅度大。在一个生长季中,栽培甘草主根甘草酸以10月份含量最高,表明秋末是最佳采收期。栽培甘草主根在1.0m土壤深度甘草酸含量较高且有继续增加的趋势,故直接播种方式种植甘草不利于根系采收,造成资源浪费,需要探索更有效的甘草栽培技术。  相似文献   

2.
研究了乌拉尔甘草(Glycyrrhiza uralensis)不同部位的甘草酸分布特点及动态变化。野生及栽培甘草地下部分甘草酸含量较高, 其中不定根中甘草酸含量与主根接近。野生甘草与栽培甘草地下部分甘草酸含量的月变化规律相似, 且根茎中甘草酸含量比主根、不定根变化幅度大。在一个生长季中, 栽培甘草主根甘草酸以10月份含量最高, 表明秋末是最佳采收期。栽培甘草主根在1.0 m土壤深度甘草酸含量较高且有继续增加的趋势, 故直接播种方式种植甘草不利于根系采收, 造成资源浪费, 需要探索更有效的甘草栽培技术。  相似文献   

3.
光果甘草营养器官不同季节总黄酮消长规律的研究   总被引:1,自引:0,他引:1  
利用紫外分光光度法对二年生栽培光果甘草不同营养器官、不同季节中总黄酮含量的消长规律进行分析研究,以探索光果甘草中总黄酮含量的消长规律,为生产中确定合理的采收期及其采收部位提供依据。结果显示:不同营养器官中,二年生栽培光果甘草总黄酮含量的高低顺序为:上部叶>中部叶>毛状根>水平根茎>侧根>主根、垂直根茎、上部茎>中部茎、下部茎;4~11月,二年生栽培光果甘草总黄酮含量波动较大,6、9、10月含量较高。综合分析表明:叶和毛状根是总黄酮含量最高的部位,二年生栽培光果甘草最佳采收期为早秋;建议对叶采收入药,综合利用光果甘草资源。  相似文献   

4.
野生与栽培乌拉尔甘草不同部位甘草酸含量分析   总被引:7,自引:0,他引:7  
采用超声提取法结合高效液相色谱(HPLC)对黑龙江省西部野生与栽培乌拉尔甘草不同部位的甘草酸含量进行测定,结果表明:超声方法提取甘草酸是便捷、有效的方法之一,最佳提取条件为50%甲醇提取液,超声提取45m in。甘草地下部分甘草酸含量较高,野生甘草的甘草酸含量主根 > 横根茎 > 不定根 > 垂根茎;栽培甘草则为不定根 > 主根 > 横根茎;总体上看地上部分甘草酸含量是微量的,其中叶的甘草酸含量相对较多,地上茎、种子等器官甘草酸含量较低。无论野生甘草还是栽培甘草, 10月份甘草地下部分甘草酸含量大于5月份,并且这种差别在栽培甘草中表现更明显。人工管理措施对甘草酸含量具有较大影响,野生甘草和栽培甘草经过土壤翻松和良好的田间管理模式反而使甘草酸含量下降,按种植农作物模式对栽培甘草进行管理对提升甘草酸含量效果不佳,给予一定的环境胁迫可以提高甘草酸的含量。在黑龙江省西部,野生甘草主根在1.0~2.0 m深度为甘草酸含量分布较高的部位;栽培甘草主根甘草酸含量随土壤深度的增加而增加,其根尾的甘草酸含量最高,表明栽培甘草主根尚未伸长到其甘草酸含量最高的土壤深度。  相似文献   

5.
人为扰动程度对土壤环境和甘草地下根系的影响   总被引:6,自引:2,他引:4  
在相对一致的生境条件下 ,人为干扰 (即土壤耕作 )是土壤物理性质改变的重要原因 ,而土壤条件的变化又是影响甘草地下部分形态变化和无性繁殖效率的主要原因。按照土壤扰动程度将甘草分为无扰动野生甘草、轻度扰动野生甘草、重度扰动野生甘草和栽培型甘草。土壤扰动程度对土壤的水分通透性、土壤保水能力、有机质含量、p H值等指标产生较大的影响。土壤干扰的程度越强 ,表层土壤水分含量降低 ,土壤 p H值增大 ;土壤干扰的程度对 4 0 cm以下的土壤受到影响较小。土壤干扰可使适合甘草根茎生活的密沙壤层变薄。不同土壤扰动程度对无扰动野生甘草、轻度扰动野生甘草、重度扰动野生甘草的横走根茎的分布深度具有较大影响。在重度干扰土壤中 ,如果不考虑对横走根茎的人为破坏 ,野生甘草的主根分布的上限可能达到 2 0 cm。在不同土壤扰动程度下 ,3种野生型甘草休眠芽萌发率均在 10 %~ 15 %之间 ,而栽培甘草高达 2 9.78% ;随着对土壤干扰的加强 ,野生甘草休眠芽萌发率有下降的趋势 (栽培甘草例外 )。不同类型的甘草的休眠芽成苗率较低 ,均不超过 7% ,其中野生型、野生轻度干扰型、野生重度干扰型甘草休眠芽成苗率有上升的趋势 ,但栽培甘草的成苗率最低 ,只有 2 .3%。横走根茎是甘草无性繁殖的重要器官 ,受土壤  相似文献   

6.
光果甘草(Glycyrrhiza glabra L.)为甘草属(Glycyrrhiza L.)多年生草本植物,是药用甘草的原植物之一[1].甘草属植物所含的黄酮类成分具有抗血栓、抗氧化、抗肿瘤、抗衰老、增加白细胞、抗动脉硬化、抗心律失常和抑制HIV等作用[2-5];光果甘草中的黄酮类成分光甘草定具有良好的抗氧化、抗炎及抗菌作用,应用前景广阔[6].目前关于光果甘草总黄酮含量已有一些报道[7-8],但有关生长年限对栽培光果甘草总黄酮含量的影响却很少报道[9-10],尤其是对不同栽培龄期光果甘草在不同采集时间各部位总黄酮含量的变化规律缺乏较全面的研究,致使光果甘草药材生产缺乏有力的理论指导依据.  相似文献   

7.
黑龙江省西部乌拉尔甘草总黄酮含量的动态变化研究   总被引:6,自引:1,他引:5  
采用超声提取和分光光度法对黑龙江省西部地区乌拉尔甘草不同部位的总黄酮含量进行测定,并对其季节变化进行了分析,研究结果表明:采用50%甲醇溶液提取,超声45 min对甘草总黄酮提取效果较好,适于进行大批量样品的提取测定.无论是野生甘草还是栽培甘草,在一个生长季中,叶的总黄酮含量最高,而地下部分含量则相对较低.在5~10月期间,叶的总黄酮含量逐渐下降,而地下部分总黄酮含量如根和根茎具有上升的趋势.甘草各部位总黄酮含量在不同生长季存在波动现象,尤其在具有运输功能的部位如复叶柄、地上茎表现更为明显.野生甘草不同部位的总黄酮含量的波动可能与有性繁殖有关,而栽培甘草的总黄酮含量的波动可能与无性生殖有关.  相似文献   

8.
甘草生活史型的划分   总被引:6,自引:5,他引:1  
探讨了甘草生活史型的定性和定量划分方法并对其结果进行了对比,结果如下:生活史型定性划分法基于生态幅与扰动程度对甘草生活的生境进行划分,将野生甘草、半野生甘草和栽培甘草分别划分为C、CVS和S生活史型。生活史型定量划分法是将生长于不同生境中甘草的营养生长、克隆生殖和有性生殖形态性状参数进行主成分分析,根据主成分得分比例划分生活史型。野生甘草定量划分结果为C0.4552S0.3150V0.2297型,总体上趋于C型生活史型;半野生甘草划分结果为C0.3540V0.3534S0.2926型,其营养生长、无性生殖和有性生殖发育比较均衡,属于CVS过渡生活史型;栽培甘草划分结果为V0.8931S0.0569C0.0500型,为比较典型的V生活史型。栽培甘草的定性、定量划分结果不一致的原因主要在于生长年限太少,克隆生殖和有性生殖均不发达。对植物生活史型的定量划分方法比定性划分法更为可靠、客观。  相似文献   

9.
为分析不同栽培基质的酸碱度对甘草生长及菌根效应的影响,使用摩西管柄囊霉Funneliformis mosseae(FM)菌剂,以盆栽甘草Glycyrrhiza uralensis为材料,以灭菌的水洗河沙为栽培基质,设置接菌组和空白组,浇灌以不同pH的水,处理60d后测定各处理组的侵染率、侵染密度、生物量指标、光合指标以及有效成分含量。实验结果表明,未接菌条件下,甘草更适合在pH 6-7范围内生长;接种菌剂后,甘草在pH 7-8范围内长势更佳。在pH 7-8范围内,菌根对甘草生长的贡献率较大,光合速率较快。接菌情况下,pH 7时,甘草有效成分积累高于其他接菌组和未接菌组。因此在甘草的种植应用上,摩西管柄囊霉F. mosseae适合在中性和偏碱性栽培基质上配合使用。  相似文献   

10.
选用不同栽培条件同年种植和同一栽培环境下不同年份种植的甘草根茎切片处理,对横截面观察,发现所有根截面均有以维管束为中心的同心环,同心环数目与甘草栽培年龄一致;生长环境对同心环数目没有影响,但对同心环色泽及环间距有较明显影响。  相似文献   

11.
人为扰动对甘草不同部位甘草酸含量和总黄酮含量均有较大的影响。即使是轻度的人为扰动 (土壤翻松 1次 )也会导致野生甘草的甘草酸含量明显下降 ,尤其对地下根茎 (兼有运输和储存功能 )中的甘草酸的积累影响最大。重度扰动栽培甘草各部位的甘草酸含量均较低 ,相对而言黄酮类物质的积累速率高于甘草酸 ,表明土壤扰动因素对甘草酸的形成与积累的影响大于总黄酮的形成与积累。无扰动野生甘草和轻度扰动野生甘草总黄酮含量从地上到地下呈下降趋势 ,而重度扰动栽培甘草的叶和不定根各有一个含量较高的部位 ,据此推断叶和不定根 (含毛状根 )是黄酮类物质的主要产生部位 ;具有输导功能的地上茎、复叶柄中总黄酮含量较低且波动较大。人为扰动对不同土壤深度甘草主根中甘草酸含量和甘草总黄酮含量的变化规律影响较小。无扰动野生甘草和轻度扰动野生甘草主根在 1.0~ 2 .0 m深度甘草酸含量分布较高是对该生境不同土壤深度长期适应的结果 ,而重度扰动栽培甘草主根可能尚未达到相应的土壤深度 ,因而表现为 1.0 m以下深层土壤中甘草酸含量较高。总之 ,旨在改善甘草生长条件的人为扰动对甘草酸和总黄酮的积累具有消极影响 ,适当的胁迫环境条件对提高药用植物的品质有益  相似文献   

12.
甘草内生细菌多样性研究   总被引:5,自引:1,他引:4  
以分离培养的方法对内蒙古鄂尔多斯市甘草基地野生及栽培甘草内生细菌的多样性进行了初步研究。结果表明, 野生及栽培甘草植株内存在大量种群丰富的内生细菌。经ERIC-PCR指纹图谱分析, 共分离到120株内生细菌, 野生及栽培甘草均表现出根和叶部位的内生细菌数量多于茎部。对其中82株进行16S rDNA片段测序分析, 结果表明这些内生细菌分别与GenBank中α、β、γ-Proteobacteria、Firmicutes、Actinobacteria五类细菌中的19个已知属相似性达到97%~100%。内生细菌的主要优势种群为芽孢杆菌属(Bacillus sp.)、假单胞菌属(Pseudomonas sp.)、泛菌属( Pantoea sp.)和沙雷氏菌属(Serratia sp.)。  相似文献   

13.
甘草内生细菌多样性研究   总被引:4,自引:1,他引:3  
以分离培养的方法对内蒙古鄂尔多斯市甘草基地野生及栽培甘草内生细菌的多样性进行了初步研究.结果表明,野生及栽培甘草植株内存在大量种群丰富的内生细菌.经ERIC-PCR指纹图谱分析,共分离到120株内生细菌,野生及栽培甘草均表现出根和叶部位的内生细菌数量多于茎部.对其中82株进行16S rDNA片段测序分析,结果表明这些内生细菌分别与GenBank中α、β、γ-Proteobacteria、Firmicutes、Actinobacteria五类细菌中的19个已知属相似性达到97%~100%.内生细菌的主要优势种群为芽孢杆菌属(Bacillus sp.)、假单胞菌属(Pseudomonas sp.)、泛菌属(Pantoea sp.)和沙雷氏菌属(Serratia sp.).  相似文献   

14.
以取自赤峰和鄂尔多斯的两品种乌拉尔甘草为供试材料, 采用组织培养方式栽培, 研究了高压静电场处理对叶绿素含量、渗透调节物含量及抗氧化酶活性等生理特性的影响。结果发现, 适当的高压静电场作用对甘草幼苗的生长代谢等生命过程起到促进作用。与对照组相比, 经电场处理之后的甘草幼苗体内的可溶性蛋白、叶绿素含量、相对电导率、根系活力及抗氧化性酶均发生一定的变化。研究表明, 两品种甘草苗叶片的叶绿素在电场处理均遭到不同程度的阻碍, 但均能通过增加体内抗氧化性酶活性、渗透调节物质含量及根系活力进行缓解调节, 从而说明高压静电场处理种子使得甘草表现出更强的耐受能力, 为抵抗逆境胁迫提供新思路。  相似文献   

15.
应用植物解剖学、组织化学定位和植物化学方法,对不同发育阶段的乌拉尔甘草根中的皂苷类成分的积累变化规律进行了研究,为进一步揭示甘草药材质量形成的内在机制并指导优质甘草栽培提供理论依据.结果表明:(1)乌拉尔甘草中皂苷类成分主要存在于根的韧皮薄壁细胞和射线细胞中,韧皮部中皂苷含量高于木质部和根皮,而且根的次生生长与皂苷类成分的积累具有一定的相关性.(2)不同生长年限的乌拉尔甘草根中的总皂苷含量存在差异,3年生甘草根中总皂苷含量高于2年生和1年生甘草根.  相似文献   

16.
目的:分析不同产地甘草中18α-甘草酸及18β-甘草酸的含量差异,为不同产地甘草的质量评价提供参考。方法:采集7个省区12个不同产地的甘草种子,栽培于北京中医药大学药草园,一年后以其中180株甘草作为实验材料,利用内转录间隔区(ITS)序列鉴定其基原,采用高效液相色谱(HPLC)法测定其18α-甘草酸及18β-甘草酸含量,并分析其差异性及相关性。结果:ITS鉴定结果显示180株甘草样品均为乌拉尔甘草。HPLC分析结果显示,18α-甘草酸的标准曲线为y=6×10-7x-0.0029(R2=0.9982),在0.0111~0.2214μg范围内线性良好;18β-甘草酸的标准曲线为y=1×10-6x+0.0164(R2=0.9999),在0.2256~4.5120μg范围内线性良好。12个产地中山西应县甘草样品的18α-甘草酸及18β-甘草酸含量均最高,新疆尼勒克县甘草样品的18α-甘草酸及18β-甘草酸含量均最低,且所有样品中18α-甘草酸与18β-甘草酸的含量均存在显著相关关系。结论:不同产地甘草质量差异显著,本实验结果可为不同产地甘草的质量评价提供参考。  相似文献   

17.
本文报道了中国栽培甘草(Glycyrrhiza uralensis Fisch。)实生根的质量研究结果。主要对一至四年根的形态、构造和主要化学成分的含量做了观察和分析,发现甘草根生长快,二、三年根的粗、长度及重量,都有明显的增长。各年生根在不同季节和不同部位的主要化学成分及它们的含量有不同程度的差别。除一年生根外,二至四年生根的药材性状及含量指标,基本上都符合《中华人民共和国药典》(1963年版)的规定。综合所有研究结果,认为三年根不仅有较高的产量,而且主要化学成分的含量也较高,是药用及生产甘草浸膏的较好的原料,值得进一步研究、生产、推广、应用。  相似文献   

18.
不同生境甘草的生态型研究   总被引:3,自引:0,他引:3  
采用SDS-PAGE电泳的方法,对5种不同生境的甘草(G ly cy rrh iza ura lensis F isch.)幼苗进行了同工酶[过氧化物酶(POD)、酯酶(EST)、乳酸脱氢酶(LDH)和苹果酸脱氢酶(M DH)]研究,并利用PEG 6000进行了水分胁迫的生理响应实验.同时,对种植在相同生境下的2年生子代植株的地上部形态特征进行了观测.结果表明,5种生境的甘草至少已分化为2种生态型,且与它们的生境有显著的相关性,生长在生境干燥度较大的民勤甘草(M G)和酒泉甘草(JG)为一类,其幼苗的耐旱能力较强,而生长在干燥度相对小的大兴甘草(DG)、沙坡头甘草(SG)以及内蒙甘草(NG)归为另一类,幼苗的耐旱能力也低于前者,甘草生境中气候因素的水因子可能是影响其生态型分化的主导因子.由本研究结果得出以下推论,不同生境甘草的生态型分化是其适应环境进化的结果,甘草可能是甘草属的先锋种,由于长期适应不同的生态环境而产生了趋异变化,并形成了不同的生态型乃至新种.  相似文献   

19.
以种植于新疆石河子的光果甘草( Glycyrrhiza glabra Linn.)、胀果甘草( G. inflata Batal.)、乌拉尔甘草( G. uralensis Fisch.)、黄甘草( G. eurycarpa P. C. Li)和蜜腺甘草( G. glabra var. glandulosa X. Y. Li)为研究对象,对植株不同部位的花序数量、花序正常发育率、每花序单花数量和果穗干质量,以及植株不同部位和花序不同部位的生物量投入比、座果率、结籽率、种子投影面积和种子千粒质量进行测定;在此基础上,对供试5种甘草属( Glycyrrhiza Linn.)植物的繁殖资源分配模式和种子生产策略进行分析。结果表明:同一植株内,光果甘草、乌拉尔甘草、黄甘草和蜜腺甘草的花序数量、花序正常发育率、每花序单花数量和果穗干质量从植株下部到上部总体上依次递减,而胀果甘草植株不同部位间这4项指标总体上无显著差异。同一植株内,胀果甘草植株中部的生物量投入比和座果率均较高,但其生物量投入比、座果率和结籽率在植株不同部位间均无显著差异;而供试另4种植物的生物量投入比、座果率和结籽率从植株下部到上部总体上依次递减。同一花序内,胀果甘草花序中部的生物量投入比明显高于花序上部和下部,座果率从花序下部到上部依次递减,结籽率则在花序不同部位间无显著差异,而供试另4种植物的生物量投入比、座果率和结籽率从花序下部到上部总体上依次递减。供试5种植物的种子投影面积和种子千粒质量在植株不同部位间和花序不同部位间均无显著差异。综合研究结果显示:在资源竞争、结构效应和花粉限制的影响下,供试5种甘草属植物存在2种不同的资源分配模式和种子生产格局。其中,光果甘草、乌拉尔甘草、黄甘草和蜜腺甘草通过减少对晚发育的花或果实的资源投入来保障早发育的花或果实获得较多的资源,达到繁殖成功的目的;而胀果甘草则采取对花和果实随机败育的方式减小资源竞争的压力,这2种繁殖资源分配模式和种子生产策略对提高甘草属植物的繁殖成功率具有重要作用。  相似文献   

20.
对甘草的有性生殖特性进行了研究,利用扫描电子显微镜对乌拉尔甘草、光果甘草和胀果甘草花粉的超微结构进行观察,利用荧光显微镜确定乌拉尔甘草的授粉方式、花粉生活力和柱头活性以及授粉后受精时间.结果表明,花粉超微结构为甘草的鉴别提供了一定的形态学依据;甘草的授粉方式属于闭花受精;花粉生活力在每天12:00时最强,去雄后超过4d的柱头已经不具备接受花粉的能力;对授粉后不同时间的雌蕊进行研究得出授粉后6h花粉管进入胚珠进行受精.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号