首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 149 毫秒
1.
摘要:【目的】揭示腾冲嗜热菌中两个单链DNA结合蛋白SSB2和SSB3的全新的底物结合功能及其不同的体内表达模式。【方法】利用腾冲嗜热菌复制起始位点附近的长度较短的单链DNA为底物,采用非变性聚丙烯酰胺凝胶电泳及western blot方法,研究SSB2和SSB3体外单链DNA结合特征和体内表达模式。【结果】SSB2 与35nt的复制起始区单链DNA(ssDNA)结合, 形成单个SSB2-DNA复合物;当与59 nt ssDNA结合时,可以随着蛋白浓度的递增形成一个或两个SSB2-DNA复合物;而与70n  相似文献   

2.
大肠杆菌单链结合蛋白SSB在DNA复制、重组和修复中起着重要作用。为研究单链结合蛋白SSB的体外生物功能构建了融合蛋白SSB的表达载体并使其高效表达及易于纯化。ssb基因片段是以E.coli K-12基因组为模板经PCR扩增获得,并通过基因的体外拼接成功构建了表达载体pQE30-ssb。重组菌株M15/ pQE30-ssb经过IPTG的诱导表达了蛋白SSB。收集菌体细胞、超声波破碎后离心取上清进行SDS-PAGE分析,结果表明有一与预期分子量(20.6 kD)相应的诱导表达条带出现,其表达量约占全细胞蛋白的30%且以可溶形式存在。利用固定化金属离子(Ni2+)配体亲和层析柱纯化融合蛋白SSB,其纯度达到90%。通过凝胶层析和等离子共振技术对SSB的生物功能进行了系统研究分析。结果表明,SSB蛋白以四聚体形式与单链DNA分子结合,其亲和力常数(KD)为4.79×10-7 M。  相似文献   

3.
在细菌细胞中,为了维持基因组稳定和正常的生命活动,RNase HI通常以降解RNA/DNA杂合链中RNA的方式来防止复制中引物的积累以及转录中R环的形成。RNase HI对底物的识别主要依赖于DNA与RNA结合槽,对底物的催化主要依赖于DEDD基序和位于活性位点附近柔性环中的一个组氨酸。以Mg2+为代表的金属离子在催化过程中发挥了至关重要的作用。杂交双链中ssDNA突出部分的类型决定了RNase HI的作用模式:在没有突出或在ssDNA的5′端存在突出部分的情况下,RNase HI作为一种非序列特异性核酸内切酶随机地降解RNA;当ssDNA的3′端存在突出部分时,RNase HI依靠5′核酸外切酶活性对RNA进行连续切割。RNase HI、Rep、DinG和UvrD通过与单链DNA结合蛋白(single-stranded DNA-binding protein, SSB)的C端尾部的6个残基相互作用被招募到复制叉附近,并可能以协作的方式解决复制-转录冲突。RNaseHI的缺失或活性降低将引起DNA结构不稳定、基因突变、转录装置回溯和复制不协调等一系列有害后果。RN...  相似文献   

4.
随机单链DNA文库SELEX筛选寡核苷酸适配子方法的建立   总被引:10,自引:1,他引:9  
指数富集配基的系统进化(SELEX)技术是一种新的组合化学技术.体外构建了一个长度为81 nt、含有35个随机序列的单链DNA(ssDNA)文库,优化了ssDNA文库扩增为双链DNA (dsDNA)文库的PCR反应条件.通过对比不对称PCR和生物素-链亲和素磁珠分离方法制备ssDNA文库的效果,确定了以生物素-链亲和素磁珠分离方法制备ssDNA.由于脱氧核糖核酸的疏水性导致ssDNA文库与硝酸纤维素滤膜的结合背景过高,因此选择以微孔板为介质,分离与靶蛋白结合的适配子.经过9轮循环筛选,随机ssDNA文库与丙型肝炎病毒(HCV)核心蛋白(C蛋白)的结合率从0.5%上升到32.5%.  相似文献   

5.
利用基因工程手段表达了分子量约为24 kDa的重组大肠杆菌单链结合蛋白 (r-SSBP),通过凝胶阻滞电泳与DNA熔解温度 (Tm) 影响实验表征了r-SSBP与单链DNA (ssDNA) 结合的特性,结果表明,r-SSBP可以与ssDNA结合,并且能够降低DNA的Tm值,同时还能增大含有单个错配碱基的DNA与完全匹配的DNA的Tm值差异,这一特性在提高单核苷酸多态性检测的特异性方面具有潜在的应用价值。此外,将r-SSBP应用于本课题组开发的高灵敏度焦磷酸测序体系中测定已知序列ssDNA模板,结果表明,r  相似文献   

6.
目的:研究不同浓度镁离子对成骨细胞活力和分化的影响,并探讨镁基生物材料促进骨再生的机制。方法:分离培养大鼠乳鼠颅骨成骨细胞,之后将细胞分别在DMEM培养基(含有0.8 m M镁离子;对照组)和含有6 m M、10 m M、18 m M镁离子(实验组)的培养基中进行培养,通过MTT法测定细胞活力,ALP活力、茜素红染色法测定成骨细胞的分化,通过western blot法测定不同浓度镁离子组中PI3K/Akt信号通路的表达情况。结果:6 m M、10 m M镁离子组成骨细胞活力、ALP活力、基质矿化水平较对照组明显增加(P0.05),18 m M镁离子组成骨细胞活力、ALP活力、基质矿化水平对照组明显降低(P0.05)。在10 m M镁离子组加入wortmannin后,上述增强的结果受到抑制。结论:6-10 m M镁离子促进成骨细胞的活力和分化,而过高浓度镁离子(18 m M)对成骨细胞的活力和分化具有抑制作用。10 m M镁离子通过激活PI3K/Akt信号通路促进成骨细胞的活力和分化。这项研究为医用镁基生物材料的进一步研究提供了很好的参考作用。  相似文献   

7.
利用100 keV/μm碳离子束(初始能量为290 MeV/u)照射溶解于纯水、10 mmol/L Tris、1 mmol/L EDTA及TE 缓冲液中的pUC19质粒DNA.通过琼脂糖凝胶电泳技术分析了不同溶液中各种形态DNA分子所占份额,并计算得到不同剂量下平均每个质粒分子中单链断裂(SSB)及双链断裂(DSB)的数目.发现Tris通过抑制SSB和DSB的产生对碳重离子辐照下的质粒DNA有明显的保护作用,而EDTA能够加剧SSB的产生而抑制DSB的形成.  相似文献   

8.
Bloom 综合症(BLM)解旋酶是RecQ家族DNA解旋酶中的一个重要成员,参与了DNA复制、修复、转录、重组以及端粒的维持等细胞代谢过程,在维持染色体的稳定性中具有重要的作用.BLM解旋酶的突变可导致Bloom综合症,患者遗传不稳定易患多种类型癌症.本研究运用荧光偏振技术研究BLM解旋酶催化核心(BLM642-1290)与双链DNA(dsDNA)的相互作用,分析其相关特征参数,了解BLM642-1290解旋酶与dsDNA的结合和解链特性.结果表明,BLM642-1290解旋酶与dsDNA的结合和解链和dsDNA3’末端的单链DNA(ssDNA)长度有关;解旋酶优先结合于dsDNA底物的ssDNA末端,且每分子解旋酶可结合9.6 nt的ssDNA;dsDNA3’末端ssDNA的长度为9.6 nt时,解旋酶的解链效率达到最大且不再随其长度而变化.另外,BLM642-1290解旋酶也能够结合和解链钝末端dsDNA,但其结合亲和力和解链效率低于有3’末端ssDNA的dsDNA.推测BLM642-1290解旋酶在与dsDNA底物结合和解链时是单体形式,可能以尺蠖的形式解开dsDNA.这些结果可为进一步研究BLM解旋酶的功能特征提供理论基础.  相似文献   

9.
利用CRISPR/Cas9基因编辑技术建立tau-V337M突变的阿尔茨海默病(Alzheimer’s disease,AD)小鼠模型。通过设计和体外合成单向导RNAs(single guide RNAs,sgRNA)及单链寡核苷酸(single-stranded oligonucleotides,ssODN),将sgRNA、Cas9蛋白、ssODN注射到小鼠受精卵内,利用DNA切割和重组产生突变。为了提高重组效率,又在注射时添加Rad51蛋白。使用自然交配的雌鼠作为受体,将2细胞期的编辑胚胎进行单侧输卵管移植。研究发现通过添加Rad51蛋白可以获得较高的突变效率,在F0小鼠中获得了tau-V337M小鼠并进行扩繁,F0代tau-V337M小鼠可以将突变遗传给F1代。综上所述,本研究利用Cas9、ssODN和Rad51成功建立了首个tau-V337M基因位点突变的小鼠模型,为AD的研究和点突变模型制作提供了模型和方法基础。  相似文献   

10.
Rodenburg等最近报道,如果用电激法将DNA直接导入烟草原生质体,那么单链DNA(ssDNA)的稳定的转化频率将比双链DNA(dsDNA)高3~10倍.他们认为,ssDNA能比dsDNA高效地进入植物原生质体的核或整合到植物的基因组中. 但是,剑桥大学的I.J.Furner等分析了导入碧冬茄叶片原生质体中的ssDNA的暂时表达,认为直接导入的ssDNA在植物染色体外变成双链DNA,然后整合到核基因组中.他们发现,在有37%聚乙二醇6000存在时,通过孵育细胞而导人ssDNA和dsDNA,在暂时的和稳定的测定中它们的转化率相当.  相似文献   

11.
A binding protein for single-stranded DNA (ssDNA) was purified from calf thymus to near homogeneity by chromatography on DEAE-cellulose, blue-Sepharose, ssDNA-cellulose and FPLC Mono Q. The most purified fraction consisted of four polypeptides with molecular masses of 70, 55, 30, and 11 kDa. The polypeptide with the molecular mass of 55 kDa is most likely a degraded form of the largest polypeptide. The complex migrated as a whole on both glycerol gradient ultracentrifugation (s = 5.1 S) and gel filtration (Stokes' radius approximately 5.1 nm). Combining these data indicates a native molecular mass of about 110 kDa, which is in accord with a 1:1:1 stoichiometry for the 70 + 55/30/11-kDa complex. The ssDNA binding protein (SSB) covered approximately 20-25 nucleotides on M13mp8 ssDNA, as revealed from both band shift experiments and DNase I digestion studies. The homologous DNA-polymerase-alpha-primase complex was stimulated by the ssDNA binding protein 1.2-fold on poly(dA).(dT)14 and 10-13-fold on singly primed M13mp8 DNA. Stimulation was mainly due to facilitated DNA synthesis through stable secondary structures, as demonstrated by the vanishing of many, but not all, pausing sites. Processivity of polymerase-primase was not affected on poly(dA).(dT)14; with poly(dT).(rA)10 an approximately twofold increase in product lengths was observed when SSB was present. The increase was attributed to a facilitated rebinding of polymerase alpha to an already finished DNA fragment rather than to an enhancement of the intrinsic processivity of the polymerase. Similarly, products 300-600 nucleotides long were formed on singly primed M13 DNA in the presence of SSB, in contrast to 20-120 nucleotides when SSB was absent. DNA-primase-initiated DNA replication on M13 DNA was inhibited by SSB in a concentration-dependent manner. However, with less sites available to begin with RNA priming, more homogeneous products were formed.  相似文献   

12.
Kozlov AG  Lohman TM 《Biochemistry》2002,41(39):11611-11627
The kinetic mechanism of transfer of the homotetrameric Escherichia coli SSB protein between ssDNA molecules was studied using stopped-flow experiments. Dissociation of SSB from the donor ssDNA was monitored after addition of a large excess of unlabeled acceptor ssDNA by using either SSB tryptophan fluorescence or the fluorescence of a ssDNA labeled with an extrinsic fluorophore [fluorescein (F) or Cy3]. The dominant pathway for SSB dissociation occurs by a "direct transfer" mechanism in which an intermediate composed of two DNA molecules bound to one SSB tetramer forms transiently prior to the release of the acceptor DNA. When an initial 1:1 SSB-ssDNA complex is formed with (dT)(70) in the fully wrapped (SSB)(65) mode so that all four SSB subunits are bound to (dT)(70), the formation of the ternary intermediate complex occurs slowly with an apparent bimolecular rate constant, k(2,app), ranging from 1.2 x 10(3) M(-1) s(-1) (0.2 M NaCl) to approximately 5.1 x 10(3) M(-1) s(-1) (0.4 M NaBr), and this rate limits the overall rate of the transfer reaction (pH 8.1, 25 degrees C). These rate constants are approximately 7 x 10(5)- and approximately 7 x 10(4)-fold lower, respectively, than those measured for binding of the same ssDNA to an unligated SSB tetramer to form a singly ligated complex. However, when an initial SSB-ssDNA complex is formed with (dT)(35) so that only two SSB subunits interact with the DNA in an (SSB)(35) complex, the formation of the ternary intermediate occurs much faster with a k(2,app) ranging from >6.3 x 10(7) M(-1) s(-1) (0.2 M NaCl) to 2.6 x 10(7) M(-1) s(-1) (0.4 M NaBr). For these experiments, the rate of dissociation of the donor ssDNA determines the overall rate of the transfer reaction. Hence, an SSB tetramer can be transferred from one ssDNA molecule to another without proceeding through a free protein intermediate, and the rate of transfer is determined by the availability of free DNA binding sites within the initial SSB-ssDNA donor complex. Such a mechanism may be used to recycle SSB tetramers between old and newly formed ssDNA regions during lagging strand DNA replication.  相似文献   

13.
We compared the biochemical properties of the RecA441 protein to those of the wild-type RecA protein in an effort to account for the constitutive protease activity observed in recA441 strains. The two RecA proteins have similar properties in the absence of single-stranded DNA binding protein (SSB protein), and the differences that do exist shed little light on the temperature-inducible phenotype observed in recA441 strains. In contrast, several biochemical differences are apparent when the two proteins are compared in the presence of SSB protein, and these are conducive to a hypothesis that explains the temperature-sensitive behavior observed in these strains. We find that both the single-stranded DNA (ssDNA)-dependent ATPase and LexA-protease activities of RecA441 protein are more resistant to inhibition by SSB protein than are the activities of the wild-type protein. Additionally, the RecA441 protein is more capable of using ssDNA that has been precoated with SSB protein as a substrate for ATPase and protease activities, implying that RecA441 protein is more proficient at displacing SSB protein from ssDNA. The enhanced SSB protein displacement ability of the RecA441 protein is dependent on elevated temperature. These observations are consistent with the hypothesis that the RecA441 protein competes more efficiently with SSB protein for limited ssDNA sites and can be activated to cleave repressors at elevated temperature by displacing SSB protein from the limited ssDNA that occurs naturally in Escherichia coli. Neither the ssDNA binding characteristics of the RecA441 protein nor the rate at which it transfers from one DNA molecule to another provides an explanation for its enhanced activities, leading us to conclude that kinetics of RecA441 protein association with DNA may be responsible for the properties of the RecA441 protein.  相似文献   

14.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

15.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

16.
RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.  相似文献   

17.
Single-stranded DNA binding proteins (SSBs) have been isolated from many organisms, including Escherichia coli, Saccharomyces cerevisiae and humans. Characterization of these proteins suggests they are required for DNA replication and are active in homologous recombination. As an initial step towards understanding the role of the eukaryotic SSBs in DNA replication and recombination, we examined the DNA binding and strand exchange stimulation properties of the S. cerevisiae single-strand binding protein y-RPA (yeast replication protein A). y-RPA was found to bind to single-stranded DNA (ssDNA) as a 115,000 M(r) heterotrimer containing 70,000, 36,000 and 14,000 M(r) subunits. It saturated ssDNA at a stoichiometry of one heterotrimer per 90 to 100 nucleotides and binding occurred with high affinity (K omega greater than 10(9) M-1) and co-operativity (omega = 10,000 to 100,000). Electron microscopic analysis revealed that y-RPA binding was highly co-operative and that the ssDNA present in y-RPA-ssDNA complexes was compacted fourfold, arranged into nucleosome-like structures, and was free of secondary structure. y-RPA was also tested for its ability to stimulate the yeast Sepl and E. coli RecA strand-exchange proteins. In an assay that measures the pairing of circular ssDNA with homologous linear duplex DNA, y-RPA stimulated the strand-exchange activity of Sepl approximately threefold and the activity of RecA protein to the same extent as did E. coli SSB. Maximal stimulation of Sepl occurred at a stoichiometry of one y-RPA heterotrimer per 95 nucleotides of ssDNA. y-RPA stimulated RecA and Sepl mediated strand exchange reactions in a manner similar to that observed for the stimulation of RecA by E. coli SSB; in both of these reactions, y-RPA inhibited the aggregation of ssDNA and promoted the co-aggregation of single-stranded and double-stranded linear DNA. These results demonstrate that the E. coli and yeast SSBs display similar DNA-binding properties and support a model in which y-RPA functions as an E. coli SSB-like protein in yeast.  相似文献   

18.
The tetrameric Escherichia coli single-stranded DNA (ssDNA) binding protein (Ec-SSB) functions in DNA metabolism by binding to ssDNA and interacting directly with numerous DNA repair and replication proteins. Ec-SSB tetramers can bind ssDNA in multiple DNA binding modes that differ in the extent of ssDNA wrapping. Here, we show that the structurally similar SSB protein from the malarial parasite Plasmodium falciparum (Pf-SSB) also binds tightly to ssDNA but does not display the same number of ssDNA binding modes as Ec-SSB, binding ssDNA exclusively in fully wrapped complexes with site sizes of 52-65 nt/tetramer. Pf-SSB does not transition to the more cooperative (SSB)(35) DNA binding mode observed for Ec-SSB. Consistent with this, Pf-SSB tetramers also do not display the dramatic intra-tetramer negative cooperativity for binding of a second (dT)(35) molecule that is evident in Ec-SSB. These findings highlight variations in the DNA binding properties of these two highly conserved homotetrameric SSB proteins, and these differences might be tailored to suit their specific functions in the cell.  相似文献   

19.
The Escherichia coli single-stranded DNA binding protein (SSB) binds selectively to single-stranded (ss) DNA intermediates during DNA replication, recombination and repair. Each subunit of the homo-tetrameric protein contains a potential ssDNA binding site, thus the protein can bind to ssDNA in multiple binding modes, one of which is the (SSB)(65) mode, in which a 65 nucleotide stretch of ssDNA interacts with and wraps around all four subunits of the tetramer. Previous stopped-flow kinetic studies of (SSB)(65) complex formation using the oligodeoxynucleotide, (dT)70, were unable to resolve the initial binding step from the rapid wrapping of ssDNA around the tetramer. Here we report a laser temperature-jump study with resolution in the approximately 500 ns to 4 ms time range, which directly detects these ssDNA wrapping/unwrapping steps. Biphasic time courses are observed with a fast phase that is concentration-independent and which occurs on a time-scale of tens of microseconds, reflecting the wrapping/unwrapping of ssDNA around the SSB tetramer. Analysis of the slower binding phase, in combination with equilibrium binding and stopped-flow kinetic studies, also provides evidence for a previously undetected intermediate along the pathway to forming the (SSB)(65) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号