首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
真核细胞中,作为染色质基本结构单元的核小体参与调控基因的转录、DNA复制、重组以及RNA剪接等诸多生物学过程。阐明核小体定位机制并准确预测核小体在染色体上的位置对解读染色质结构与功能有重要生物学意义。在过去30多年时间里,研究人员发展了多种预测核小体位置的方法。最理想的方法应考虑DNA序列、组蛋白修饰和染色质重塑等影响核小体定位的诸多因素,然而现实中,捕捉主要因素的模型也往往具有很高的鲁棒性和实用价值。DNA序列偏好性是在全基因组尺度上影响核小体定位的最重要因素之一,因此基于DNA序列的核小体定位预测方法也最常见。这种方法可大致分为两类,即基于DNA序列信息的生物信息学模型和基于DNA变形能的生物物理学模型。本文重点介绍生物物理学模型近些年取得的主要进展。  相似文献   

2.
肖建平  丰继华  卢英  单秋甫 《生物信息学》2013,11(2):150-152,160
在利用核小体定位实验数据训练支持向量机(SVM)对任意酵母DNA序列的核小体形成能力进行预测的过程中,发现染色质结构对基因组DNA分子进化过程有着显著影响。我们观察到核小体DNA比连接DNA的平均预测准确率低15%,这种普遍存在的局部预测准确率差异性代表了酵母核小体定位的进化印迹(Evolutionary footprint),它揭示了核小体组织在基因组的整个进化过程中所具有的保守性。  相似文献   

3.
核小体定位对真核生物基因表达调控发挥着重要作用。前期基于核小体核心及连接区域的k-mer频次分布偏好性,构建了位置权重矩阵算法,并在酿酒酵母基因组内较好地预测了核小体占据率。利用该理论模型,以1 bp碱基为步长、147 bp碱基为窗口,用该算法计算了酵母1号、3号、14号染色体上核小体形成能力强、中、弱各3条长度为147 bp的DNA序列,将这些片段克隆到重组质粒中,大量扩增回收9条标记biotin分子的目的序列。同时分别表达纯化了组蛋白H2A、H2B、H3和H4,复性后装配形成组蛋白八聚体结构。利用盐透析方法将9条DNA序列在体外组装形成核小体结构,经biotin标记检测后计算了反应过程的吉布斯自由能,对比了9条目的序列形成核小体的亲和力大小。研究发现,9条序列中有5条序列与理论预测完全符合,4条序列与理论预测不完全一致。实验结果与该算法预测的核小体定位结果基本一致,表明该理论模型能够有效预测酿酒酵母基因组核小体占据水平。  相似文献   

4.
为研究高通量的人类CD4+T细胞的核小体定位模式,使用迭代算法对核小体定位模式进行分类,并利用位置权重矩阵方法分别构建稳定核小体定位序列、动态核小体定位序列和连接区序列模型,通过十倍交叉验证评估模型性能,并与Segal方法与弯曲度方法进行比较,发现位置权重矩阵方法在敏感性、精度和准确性方面都具有一定优越性。同时采用滑窗法在全基因组选取候选序列进行核小体识别,挖掘核小体定位相关基因,并进行基因生物学进程功能富集分析,发现稳定与动态核小体、真实与潜在核小体对应的基因所参与调控的生物学过程各有不同,但也有一些生物学过程为不同类别核小体所共有,例如对细胞内大分子的调控功能。  相似文献   

5.
基因组上核小体位置的确定涉及DNA、RNA聚合酶、转录因子、后转录修饰与组蛋白变异、组蛋白修饰酶和染色质重塑复合体之间的相互作用。真核状态基因组的DNA是被包裹在核小体中,故理解控制核小体沿DNA定位的原理对于进一步理解组蛋白结合所执行的基因功能是非常必要的。而核小体的定位在诸多细胞过程中起着重要重要,比如转录调控、DNA复制和修饰等。因此核小体定位已逐渐成为目前遗传学研究的热点以及表观遗传学的重要研究内容并且也将在未来生物学研究中占据相当重要的位置。本综述以果蝇为例,全面介绍核小体定位的研究现状和未来方向。  相似文献   

6.
核小体定位研究进展   总被引:4,自引:0,他引:4  
核小体定位在诸如转录调控、DNA复制和修复等多种细胞过程中起着重要作用。基因组上核小体位置的确定涉及DNA、转录因子、组蛋白修饰酶和染色质重塑复合体之间的相互作用。核小体定位、组蛋白修饰、染色质重塑等问题已成为目前遗传学研究的热点——表观遗传学——的重要研究内容。文章从核小体定位基本概念、核小体定位与基因表达调控的关系、核小体定位实验研究和理论预测工作等几个方面总结了核小体定位的最新研究进展。  相似文献   

7.
根据核小体定位序列和缺失序列的碱基分布特征,应用多样性增量二次判别方法(IDQD)构建模型对这两类序列进行了区分,受试者操作特性曲线下的面积达到了0.958.应用这一模型研究了核小体在人类基因组剪接位点(GT/AG)邻近序列中的分布方式,发现外显子所对应的DNA序列通常倾向参与核小体的形成,并且由它所转录的RNA统计上具有较强的刚性,而剪接位点及其邻近的内含子对应的DNA序列则避免参与核小体的形成,所转录的RNA统计上具有较强的柔性.进一步还发现,DNA序列的核小体定位/缺失和RNA的刚性/柔性具有统计相关性,为从机制上解释为何前体RNA剪接事件与DNA序列中的核小体定位信息有关提供了依据.  相似文献   

8.
核小体定位是复制起始调控的重要因素,但是核小体定位是如何调控真核生物的复制起始,目前还不是很清楚。研究酵母Ⅲ号染色体上的不同活性复制起始序列形成核小体能力对探究真核生物DNA复制起始机制有着重要的生物学意义。酿酒酵母Ⅲ号染色体上的10个复制起始序列分为高活性和低活性两组复制起始序列,利用核小体体外组装技术,将回收纯化的高活性和低活性复制起始序列分别与组蛋白八聚体在体外进行梯度盐透析组装形成核小体,并进行Biotin标记检测,然后用Image J软件分析不同复制起始序列组装形成核小体能力的强弱。结果表明,用Image J软件对核小体组装能力强弱进行分析:ARS304ARS303ARS313ARS302ARS306ARS314,ARS305,ARS307,ARS309,ARS315。低活性复制起始序列较高活性复制起始序列更易形成核小体;复制起始位点偏好出现于核小体缺乏区。  相似文献   

9.
近些年来,人类健康和疾病一直都是研究者们关注的焦点,因此表观遗传学研究也成为了研究热门。在对表观遗传学进行研究的过程中,研究者们发现核小体定位、组蛋白修饰和染色质重塑等方面的问题已经成为了表观遗传学研究中的重要研究内容。因此,在对酵母、果蝇和线虫等低等生物的核小体定位进行大量研究并取得一定的成果后,研究者们开始将核小体定位的研究对象放到了人类上。本综述介绍了核小体定位的基本概念,总结了近几年来以人类为研究对象的核小体定位的理论研究进展。  相似文献   

10.
在DNA序列上,定位模糊的特殊核小体与定位良好的普通核小体同时存在于染色体区域内,但由于二者的化学性质差异不明显,区分较为困难。本文针对实验核小体在真核基因转录起始位点周围的分布规律和保守性建立了一个核小体分布模型,并在前人所做的预测核小体位置的工作基础上,利用遗传算法寻找模型上不同性质核小体的分布中心,构建核小体定位性质判别准则,最终确定了转录起始位点上、下游定位良好和模糊核小体的位置。  相似文献   

11.
染色质是真核DNA的存在方式,可以通过影响DNA的可及性调节基因转录,其基本单元为核小体,系由约147 bp的DNA缠绕在组蛋白八联体上形成的结构,核小体之间以连接DNA相连.核小体组蛋白上能发生甲基化和乙酰化等化学修饰.核小体位置、DNA的甲基化和组蛋白的修饰等对染色质状态(常染色质或异染色质)及基因组之间的长程相互作用有重要影响.近年,基于高通量测序技术,核小体位置和染色质修饰在多种细胞中的基因组分布已被测定.结果显示,这些标记的分布模式具有位点特异、动态变化、相互偶联和高度复杂的特征.本文详细回顾并评述了核小体位置和染色质修饰的分布模式、对应生物学功能、修饰之间的关联、实验测定技术、染色质状态的计算分析等内容.该工作对于深入认识和理解染色质的表观遗传调节机制有重要意义.  相似文献   

12.
研究人类基因组核苷酸多态性位点周围核小体的定位,对于分析核苷酸的变异机制有重要意义.分析了人类基因组单核苷酸多态性(SNP)位点、简单插入位点、插入删除位点和删除位点的分布规律,以及这些位点周围的核小体定位特征.结果表明:转录起始位点下游的核苷酸多态性位点分布呈现约211 bp的周期特征,单核苷多态位点另有一个146 bp的周期;约211 bp的周期与转录起始位点下游核小体的分布周期204 bp非常接近,146 bp的周期恰是核小体核心DNA的长度.这些结果说明核小体与多态性位点的分布关系密切.进一步研究证实,单核苷酸多态性位点多分布于核心DNA上,且多位于核心DNA的两端,这使得单核苷酸多态性位点具有146 bp周期,而插入、插入删除、删除多态性位点多分布于核小体排开区域,间隔约为204 bp.转录起始位点下游核小体等间隔的规则分布使得多态性位点的分布也具有周期性.研究表明,相对于核小体,不同类型变异发生的位置不同,核小体定位在基因组多态性位点的形成过程中具有重要作用.  相似文献   

13.
陈伟  罗辽复 《生物信息学》2009,7(2):159-162
应用多样性增量结合二次判别分析(Increment of Diversity with Quadratic Discriminant analysis, IDQD)方法,对酵母基因组中的核小体强/弱偏好序列进行了识别。10交叉检验的预测成功率超过了97%,受试者操作特性(receiver operating characteristic,ROC)曲线下面积达到了0.99,预测成功率高于现有SVM算法。最后利用构建好的分类器对酵母基因组中三类包含TATA盒基因的起始密码子ATC上游400nt下游100nt区域进行了分析。结果表明,IDQD算法有能力应用于基因组中核小体序列的识别。  相似文献   

14.
应用多样性增量结合二次判别分析(Increment of Diversity with Quadratic Discriminant analysis,IDQD)方法,对酵母基因组中的核小体强/弱偏好序列进行了识别.10交叉检验的预测成功率超过了97%,受试者操作特性(receiver operating characteristic,ROC)曲线下面积达到了0.99,预测成功率高于现有SVM算法.最后利用构建好的分类器对酵母基因组中三类包含TATA盒基因的起始密码子ATG上游400nt下游100nt区域进行了分析.结果表明,IDQD算法有能力应用于基因组中核小体序列的识别.  相似文献   

15.
核小体是真核生物染色质的基本组成单位,组蛋白八聚体在DNA 双螺旋上精确位置称为核小体定位.核小体定位已被证实在基因转录调控、DNA复制与修复、调控进化等过程中扮演着重要的角色.随着染色质免疫共沉淀-芯片(ChIP-chip)与染色质免疫共沉淀-测序(ChIP-seq)等高通量技术的出现,已测定了多种模式生物全基因组核小体定位图谱,掀起了一股核小体定位及其功能的研究热潮,并取得了一定的成果.本文介绍了核小体定位的概念,总结了核小体在启动子与编码区域内定位的基本模式.在此基础上,综述了核小体定位在转录起始、转录延伸、基因表达模式多样化以及可变剪接等方面的功能研究进展.  相似文献   

16.
核小体是染色体折叠的整体结构,它们的空间分布与基因组活动的调节密切相关,是基因工程和表观遗传的重要研究领域。为进一步研究核小体定位特征的物种间差异性,将希尔伯特-黄变换(HHT)引入到酵母和果蝇两个不同物种的定位信号中,从多个角度客观分析核小体定位信号特征在两个物种间的差异性。在此基础上,对酵母和果蝇核小体分布的周期特征和进化印记进行尺度和频域分析,结果表明酵母和果蝇染色体在组织结构上存在显著差异。本文研究思路为准确提取信号瞬时频率提供了前提条件。  相似文献   

17.
为探索组蛋白浓度对核小体体外装配的影响,本研究表达纯化了4种组蛋白,通过控制实验反应体系中组蛋白的浓度,利用盐透析法在体外装配了核小体,检测分析了组蛋白浓度与核小体组装效率的关系。以此实验数据为基础,提出了核小体组装过程组蛋白浓度依赖性的动力学模型。实验结果发现,反应体系中组蛋白浓度与核小体生成量呈典型的线性关系。依据动力学理论模型,进行线性回归拟合,回归系数达到0.963;经计算601 DNA序列组装核小体的反应速率常数k为1.49×10^-5mL·h·μg^-1。CS1序列验证动力学模型的线性回归相关系数为0.989,反应速率常数为1.52×10^-5mL·h·μg^-1。该实验方法及动力学模型中反应速率常数k可用于评价相同长度的DNA序列组装核小体的能力、组蛋白与其突变体以及组蛋白变体之间形成核小体结构能力的差异。该动力学模型的建立为理解核小体装配、核小体定位、染色质结构等相关问题提供了理论指导。  相似文献   

18.
荧光原位杂交(FISH)是在染色体、间期核和DNA纤维上定位特定DNA序列的一种有效而精确的分子细胞遗传学方法。20年来,植物荧光原位杂交技术发展迅速:以增加检测的靶位数为目的,发展了双色FISH、多色FISH和多探针FISH鸡尾酒技术;为增加很小染色体目标的检测灵敏度,发展了BAC-FISH和酪胺信号放大FISH(TSA-FISH)等技术;以提高相邻杂交信号的空间分辨力为主要目的,发展了高分辨的粗线期染色体FISH、间期核FISH、DNA纤维FISH和超伸展的流式分拣植物染色体FISH技术。在植物基因组分析中,FISH技术发挥了不可替代的重要作用,它可用于:物理定位DNA序列,并为染色体的识别提供有效的标记;对相同DNA序列进行比较物理定位,探讨植物基因组的进化;构建植物基因组的物理图谱;揭示特定染色体区域的DNA分子组织;分析间期核中染色质的组织和细胞周期中染色体的动态变化;鉴定植物转基因。  相似文献   

19.
基因克隆和酵母菌DNA转化技术已大大地加强了形式酵母遗传学的力量。现在已可能分离任何形式遗传学确定的基因,用离体产生的突变衍生物取代正常的染色体序列而任意改变酵母基因组,创造表现为自主复制子或小染色体的DNA分子。新酵母遗传学的这些独特的特征已用于研究真核分子生物学中的许多问题。  相似文献   

20.
在真核生物染色质中,H2A.Z是高度保守的组蛋白变异体,与转录调控、基因组的稳定性密切相关。为了探讨组蛋白修饰、DNA弯曲度与H2A.Z核小体定位三者之间的关联,在得到实验所测的相关数据后,利用MINE算法并结合皮尔逊相关系数在酵母全基因组的转录起始位点周围探讨了三者间的线性与非线性关系。其中MIC算法可以定量的得出数据之间关联度大小的值,用于衡量数据之间是否存在着关联,而皮尔逊相关系数则用于检查是否为线性关联。结果除了发现大部分组蛋白修饰种类和核小体定位之间存在着线性关联外,还探测到有两种组蛋白修饰数据(H4ac修饰与GCN4修饰)和核小体定位数据之间存在着以往未发现的非线性关系(大致呈正余弦函数),并从数据的生物背景(组蛋白修饰与核小体位置)上探讨了出现非线性现象的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号