首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】利用调节基因acyB2激活异戊酰基转移酶(ist)基因表达的特点,将ist与调节基因acyB2在异戊酰螺旋霉素(埃莎霉素)Ⅰ产生菌菌株中共表达,获得埃莎霉素Ⅰ单组分的高含量及高产量菌株WSJ-IA。对其及原始螺旋霉素产生菌菌株Streptomyces spiramyceticus F21进行了初步鉴定。【方法】从形态学、培养和生理生化特征、细胞壁化学组成、16S rRNA基因序列、5个看家基因(atpD、gyrB、rpoB、recA和trpB)蛋白分析和系统发育树构建等方面对该菌株及其原株进行了鉴定。【结果】两株菌在形态培养特征、生理生化特征、细胞壁化学组成、16S rRNA基因序列和5个看家基因蛋白水平基本一致,在系统发育树分析中同处在一个分支中。而在16S rRNA基因序列和5个看家基因蛋白水平在系统发育上它们均与已知相近菌株处于不同的分支上,并且与不同基因的相近菌株各有不同,其中无一报道产生螺旋霉素。【结论】Streptomyces spira-myceticus F21可能是一个产生螺旋霉素的链霉菌新种,16S rRNA基因序列和5个看家基因蛋白序列分析可以作为埃莎霉素Ⅰ基因工程菌生产过程中进行鉴别的分子标志。  相似文献   

2.
【目的】利用调节基因acyB2激活异戊酰基转移酶(ist)基因表达的特点, 将ist与调节基因acyB2在异戊酰螺旋霉素(埃莎霉素)Ⅰ产生菌菌株中共表达, 获得埃莎霉素Ⅰ单组分的高含量及高产量菌株WSJ-IA。本研究对其及原始螺旋霉素产生菌菌株Streptomyces spiramyceticus F21进行了初步鉴定。【方法】从形态学、培养和生理生化特征、细胞壁化学组成、16S rRNA基因序列、5个看家基因(atpD、gyrB、rpoB、recA和trpB)蛋白分析和系统发育树构建等方面对该菌株及其原株进行了鉴定。【结果】两株菌在形态培养特征、生理生化特征、细胞壁化学组成、16S rRNA基因序列和5个看家基因蛋白水平基本一致, 在系统发育树分析中同处在一个分支中。而在16S rRNA基因序列和5个看家基因蛋白水平在系统发育上它们均与已知相近菌株处于不同的分支上, 并且与不同基因的相近菌株各有不同, 其中无一报道产生螺旋霉素。【结论】Streptomyces spiramyceticus F21可能是一个产生螺旋霉素的链霉菌新种, 16S rRNA基因序列和5个看家基因蛋白序列分析可以作为埃莎霉素I基因工程菌生产过程中进行鉴别的分子标志。  相似文献   

3.
目的:通过构建重组质粒,异源表达4"-异戊酰基转移酶基因(4"-isovaleyltrasferase gene,ist)生产螺旋霉素.方法:在螺旋霉素的4"位加上异戊酰基侧链从而获得基因药物必特螺旋霉素基因.结果:研究表明acyB2基因是ist的正调控基因,ist基因与acyB2基因构建的ist-acyB2共表达质粒不能在变铅青链霉菌TK24中表达.启动区点突变的回复表明770bp到780bp之间有一碱基由原来的A回复成G.结论:经测序研究后发现在ist的启动区产生了一个点突变,拟回复此突变之后重新构建新的ist-acyB2载体,可用于检测ist基因在异源宿主中的表达情况.  相似文献   

4.
异戊酰螺旋霉素(Isovalerylspiramycin,ISP)Ⅰ是必特螺旋霉素(Bitespiramycin,BT)的一种主组分,其抗菌活性与BT相似,而且作为单一组分在质控和剂型上更具优势,目前正在进行临床前研究。原有的 ISPⅠ工程菌株经过3次基因改造,已经具有2种抗性基因,很难再进行遗传操作。前期研究利用经典同源重组的方法无法构建无抗性的ISPⅠ产生菌,文中利用CRISPR-Cas9基因编辑系统在螺旋霉素(Spiramycin,SP)产生菌中成功将3位酰基化酶的基因bsm4替换为组成型强启动子ermEp~*控制下的异戊酰基转移酶基因(Isovaleryltansferase gene,ist)。删除bsm4后突变株只能产生SPⅠ组分,外源基因ist的表达产物催化SPⅠ在其4″位进行异戊酰化修饰形成ISPⅠ。经过HPLC和质谱鉴定,阳性菌株ΔEI的发酵产物中只有ISPⅠ一种ISP组分,证实新的ISPⅠ工程菌株构建成功。ΔEI菌株不带有抗性基因,可重复利用CRISPR-Cas9系统进行基因操作来获得新的改良菌株。  相似文献   

5.
可利霉素 (Carrimycin,CAM) 是将异戊酰基转移酶基因 (Isovaleryltransferase gene,ist) 导入到螺旋链霉菌中产生的以异戊酰螺旋霉素 (Isovalerylspiramycin,ISP) 为主组分的抗生素。原工程菌中的ist基因与螺旋霉素 (Spiramycin,SP) 生物合成基因簇相距较远,且具有两种抗性基因,难以对其进行基因改造,因此需要构建新型CAM工程菌株。文中通过CRISPR-Cas9基因编辑系统靶向切割2个位点,将ist和其正调控基因acyB2通过同源重组插入到SP生物合成基因簇附近且不参与SP合成的orf54基因下游,获得2种无外源抗性基因插入的CAM产生菌54IA-1和54IA-2,经发酵产物检测发现54IA-2菌株中的ISP产量明显高于54IA-1菌株。通过实时定量PCR (Quantitative real-time PCR,qPCR) 检测证实54IA-2菌株中ist和acyB2基因以及部分SP生物合成基因的表达量均高于54IA-1菌株。为进一步获得高产菌株,以54IA-2为出发菌株,利用核糖体工程的方法筛选利福平 (Rifampicin,RFP) 抗性菌株,在RFP浓度为40 μg/mL的抗性菌株中,ISP的产量明显提高,最高可达842.9 μg/mL,比原始菌株提高约6倍。对其中7株菌的rpoB基因进行测序分析,每株菌的第576位丝氨酸都突变为丙氨酸,在其他错义突变中产量最高的菌株RFP40-6-8在第424位的谷氨酰胺突变为亮氨酸。综上所述,本研究应用CRISPR-Cas9系统成功构建了无任何抗性标记的新型CAM工程菌株54IA-1和54IA-2,并通过核糖体工程技术筛选获得了新型CAM高产菌株RFP40-6-8,为CAM工程菌株的进一步优化改造奠定了基础。  相似文献   

6.
拟研究异源调控系统提高耐热链霉菌Streptomyces thermotolerans 4″-O-异戊酰基转移酶基因(ist)表达的可能性。在麦迪霉素产生菌Streptomyces mycarofaciens 1748中曾克隆到BamHⅠ~8.0 kb片段,含此基因片段的变铅青链霉菌TK24 Streptomyces lividans TK24转化子可将螺旋霉素高效转化为丙酰螺旋霉素。序列分析表明此片段除包含麦迪霉素4″-O-丙酰基转移酶基因(mpt)外还存在与其连锁的两个正调控基因orf27和orf28。将这个基因簇中mpt基因的orf替换为ist基因的orf,然后与两个正调控基因或者单独一个orf27连接,将这些构建好的片段分别克隆到中等拷贝数及高拷贝数载体pKC1139和pWHM3上,再转化到S.lividans TK24中。通过测定S.lividans TK24转化子中螺旋霉素生物转化为4″-O-酰化螺旋霉素的产率来评价mpt和ist基因的表达水平。结果表明只有高拷贝载体pWHM3构建的重组质粒S.lividans TK24转化子中才能明显检测到4″-O-异戊酰螺旋霉素的产生。mpt基因的正调节系统可以提高ist基因的表达水平,含两个调节基因的转化子转化效率高于含单一调节基因的转化子。  相似文献   

7.
生技霉素稳定型基因工程菌的构建*   总被引:5,自引:0,他引:5  
运用同源重组技术将异戊酰基转移酶基因整合至螺旋霉素产生菌(Streptomyces spiramyceticus F21) 的染色体上,构建了稳定的生技霉素基因工程菌。在不加压的情况下传代,菌种携带选择性遗传标记情况、生长、发酵效价及发酵产物的TLC分析均表明此基因工程菌有较好的遗传稳定性,且发酵效价及产物的组分均得到改善。Southern杂交证明外源基因在螺旋霉素产生菌染色体上的整合情况。  相似文献   

8.
螺旋霉素(SP)与麦迪霉素(MD)均为16元环大环内酯类抗生素, 并且结构非常相似。螺旋霉素含有3个组分,其结构差异表现在16元内酯环C3上的一个取代基的差异, SP I组分为羟基、SP II组分羟基乙酰化、SP III组分羟基丙酰化; 麦迪霉素是以麦迪霉素A1为主要组分的多组分抗生素, 麦迪霉素16元内酯环C3上连接的均为丙酰化羟基。已知这类抗生素16元内酯环C3羟基酰化是由一种称为3-O-酰基转移酶的蛋白催化完成。本研究将螺旋霉素产生菌—Streptomyces spiramyceticus F21中的螺旋霉素3-O-酰基转移酶基因用Streptomyces mycarofaciens ATCC 21454中的麦迪霉素3-O-酰基转移酶基因原位替换后, 发现所产生的螺旋霉素仍然含有3个组分, 并且螺旋霉素III组分也不是主要组分, 说明麦迪霉素3-O-酰基转移酶在螺旋霉素产生菌—S. spiramyceticus F21中不具有16元内酯环C3羟基丙酰化特异性以及酰化高效性, 也提示其在麦迪霉素产生菌中的丙酰化特异性和高效性可能与该菌株(种)的特性有关。  相似文献   

9.
螺旋霉素(SP)为16元环大环内酯类抗生素,含有螺旋霉素Ⅰ、Ⅱ和Ⅲ个组分,其结构的差异为16元内酯环的C3上分别连接羟基(SPⅠ)、乙酰基(SPⅡ)和丙酰基(SPⅢ);SPⅡ和SPⅢ是在相同的3-O-酰基转移酶催化下SPⅠ进一步酰化的产物。SPⅠ、SPⅡ和SPⅢ在生物学活性方面无大差异。为简化螺旋霉素组分,便于今后对其结构进行进一步改造,根据碳霉素和麦迪霉素生物合成中的3-O-酰基转移酶序列,设计了简并性PCR引物,并采用SON-PCR(single oligonucleotide nested PCR)方法,从螺旋霉素产生菌S.spiramyceticus F21中进行特异性扩增,获得了螺旋霉素3-O-酰基转移酶基因(sspA)及其侧翼序列,共约4.3kb(其中的3457nt DNA序列已被Genbank收录,DQ642742)。采用DNA同源双交换技术对S.spiramyceticus F21中的sspA进行了删除。对螺旋霉素原株和sspA缺失变株进行发酵产物提取和HPLC分析表明:原株中SPⅠ、SPⅡ和SPⅢ的相对含量分别为7.8%、67%和25%,变株中则分别为72%、18%和9.6%;变株主要组分为SPⅠ。螺旋霉素sspA缺失变株的获得为螺旋霉素组分简化及其衍生物的结构改造奠定了基础。  相似文献   

10.
生技霉素稳定型基因工程菌的构建   总被引:13,自引:0,他引:13  
运用同源重组技术将异戊酰基转移酶基因整合至螺旋霉素产生菌(StreptomycesspiramyceticusF21)的染色体上,构建了稳定的生技霉素基因工程菌。在不加压的情况下传代,菌种携带选择性遗传标记情况、生长、发酵效价及发酵产物的TLC分析均表明此基因工程菌有较好的遗传稳定性,且发酵效价及产物的组分均得到改善。Southern杂交证明外源基因在螺旋霉素产生菌染色体上的整合情况。  相似文献   

11.
螺旋霉素(SP)与麦迪霉素(MD)均为16元大环内酯类抗生素,并且结构非常相似.螺旋霉素含有3个组分,其结构差异表现在16元内酯环C<,3>上的一个取代基的差异,SPⅠ组分为羟基、SPⅡ组分羟基乙酰化、APⅢ组分羟基丙酰化;麦迪霉素是以麦迪霉素A1为主要组分的多组分抗生素,麦迪霉素16元内酯环C3上连接的均为丙酰化羟基.已知这类抗生素16元内酯环C3羟基酰化是由一种称为3-O-酰基转移酶的蛋白催化完成.本研究将螺旋霉素产生菌-Streptomycesspiramyceticus F21中的螺旋霉素3-O-酰基转移酶基因用Streptomyces mycarofaciens ATCC 21454中的麦迪霉素3-O-酰基转移酶基因原位替换后,发现所产生的螺旋霉素仍然含有3个组分,并且螺旋霉素Ⅲ组分也不是主要组分,说明麦迪霉素3-O-酰基转移酶在螺旋霉素产生菌-S.spiramyceticus F21中不具有16元内酯环C3羟基丙酰化特异性以及酰化高效性,也提示其在麦迪霉素产生菌中的丙酰化特异性和高效性可能与该菌株(种)的特性有关.  相似文献   

12.
螺旋霉素(SP)为16元环大环内酯类抗生素,含有螺旋霉素Ⅰ、Ⅱ和Ⅲ个组分,其结构的差异为16元内酯环的C3上分别连接羟基(SPⅠ)、乙酰基(SPⅡ)和丙酰基(SPⅢ);SPⅡ和SPⅢ是在相同的3-O-酰基转移酶催化下SPⅠ进一步酰化的产物。SPⅠ、SPⅡ和SPⅢ在生物学活性方面无大差异。为简化螺旋霉素组分,便于今后对其结构进行进一步改造,根据碳霉素和麦迪霉素生物合成中的3-O-酰基转移酶序列,设计了简并性PCR引物,并采用SON-PCR(single oligonucleotide nested PCR)方法,从螺旋霉素产生菌S. spiramyceticus F21中进行特异性扩增,获得了螺旋霉素3-O-酰基转移酶基因(sspA)及其侧翼序列,共约4.3kb(其中的3457nt DNA序列已被Genbank收录,DQ642742)。采用DNA同源双交换技术对S. spiramyceticusF21中的sspA进行了删除。对螺旋霉素原株和sspA缺失变株进行发酵产物提取和HPLC分析表明:原株中SPⅠ、SPⅡ和SPⅢ的相对含量分别为7.8%、67%和25%,变株中则分别为72%、18%和9.6%;变株主要组分为SPⅠ。螺旋霉素sspA缺失变株的获得为螺旋霉素组分简化及其衍生物的结构改造奠定了基础。  相似文献   

13.
螺旋霉素(SP)为16元环大环内酯类抗生素,含有螺旋霉素Ⅰ、Ⅱ和Ⅲ个组分,其结构的差异为16元内酯环的C3上分别连接羟基(SPⅠ)、乙酰基(SPⅡ)和丙酰基(SPⅢ);SPⅡ和SPⅢ是在相同的3-O-酰基转移酶催化下SPⅠ进一步酰化的产物。SPⅠ、SPⅡ和SPⅢ在生物学活性方面无大差异。为简化螺旋霉素组分,便于今后对其结构进行进一步改造,根据碳霉素和麦迪霉素生物合成中的3-O-酰基转移酶序列,设计了简并性PCR引物,并采用SON-PCR(single oligonucleotide nested PCR)方法,从螺旋霉素产生菌S. spiramyceticus F21中进行特异性扩增,获得了螺旋霉素3-O-酰基转移酶基因(sspA)及其侧翼序列,共约4.3kb(其中的3457nt DNA序列已被Genbank收录,DQ642742)。采用DNA同源双交换技术对S. spiramyceticusF21中的sspA进行了删除。对螺旋霉素原株和sspA缺失变株进行发酵产物提取和HPLC分析表明:原株中SPⅠ、SPⅡ和SPⅢ的相对含量分别为7.8%、67%和25%,变株中则分别为72%、18%和9.6%;变株主要组分为SPⅠ。螺旋霉素sspA缺失变株的获得为螺旋霉素组分简化及其衍生物的结构改造奠定了基础。  相似文献   

14.
通过提高E.coli BL21(DE3)/pAW31菌株中的酰基转移酶LovD的表达,并以Monacolin J为底物,催化合成辛伐他汀。考察发酵培养基和发酵条件对酰基转移酶LovD表达的影响;采用SDS-PAGE凝胶电泳法检测酰基转移酶LovD表达情况;并建立酶活测定方法,测定酰基转移酶LovD的实际酶活。通过实验确定酰基转移酶LovD摇瓶发酵的最佳条件:发酵培养基为TB培养基,接种量为4%,诱导初始菌密度为0.7(OD600)I,PTG浓度为0.2 mmol/L,在20℃下诱导20 h。在最佳条件下,酰基转移酶LovD的表达水平为100 mg/L,辛伐他汀的产量为1.2 g/L。  相似文献   

15.
旨在建立阿扎霉素F产生菌链霉菌211726的基因转移系统,以便基因敲除和外源基因表达等遗传操作。以整合型质粒pSET152和pIB139为出发质粒,通过接合转移构建了阿扎霉素F产生菌链霉菌211726的基因转移系统。结果显示25μg/mL阿泊拉霉素可有效筛选接合子。经PCR验证,质粒成功整合到菌株链霉菌211726基因组中,接合子经多次传代后,导入的质粒pSET152和pIB139仍稳定整合于接合子基因组上。  相似文献   

16.
对含有麦迪霉素4″-O-丙酰基转移酶(mpt)基因的BamHI-BamHI8.0kb的DNA片段进行限制性酶切分析,绘制出了含有21个酶切位点的限制性酶切图谱。以含有碳霉素异戊酰基转移酶基因(CarE)的2.4kb DNA片段为探针,经Southern blot分子杂交,将mpt定位于一个EcoRI-EcoRI-PstI3.0kb的DNA片段上,将该片段克隆至大肠杆菌/链霉菌穿梭质粒载体pWHM3  相似文献   

17.
对含有麦迪霉素4"-O-丙酰基转移酶(mpt)基因的BamHI-BamHI 8.0kb的DNA片段进行限制性酶切分析,绘制出了含有21个酶切位点的限制性酶切图谱。以含有碳霉素异戊酰基转移酶基因(CarE)的2.4kb DNA片段为探针,经Southern blot分子杂交,将mpt定位于一个EcoRI-EcoRI-Pstl 3.0kb的DNA片段上,将该片段克隆至大肠杆菌/链霉菌穿梭质粒载体pWHM3上,获得重组质粒pWFPE。含有pWFPE的螺旋霉素产生菌产二素链霉菌(S.ambofaciens)及变铅青链霉菌(J.lividans)TK24均可将内源产生的或外源加入的螺旋霉素酰化为4"-O-丙酰螺旋霉素。对EcoRI-EcoRI-PstI 3.0kbDNA片段上mpt基因进行序列分析,在该片段上有一个开放阅读框架,它以ATG为起始密码子,以TGA为终止密码子,与其序列对应的编码产物含有388个氨基酸。Mpt基因的G+C mol%为68.0,密码子第三位上G+C mol%为91.5。Mpt基因编码的氨基酸序列与CarE基因编码的氨基酸序列的相同性为67.6%,相似性为86.4%。在起始密码子上游6bp处存在…  相似文献   

18.
中央研究所开发了用放线菌的基因重组技术直接发酵生产动物用药品酰化酪氨酸的技术。酰化酪氨酸(AIV酪氨酸)是中央研究所1989年工业化的第二代酪氨酸。作为对动物用抗生物质酪氨酸的耐性菌对策,在3位上导入乙酰基,在4位上导入异戊酰基。首先发酵生产酪氨酸,接着进行第二段的发酵酰化作用。一旦使生产提高几十倍,就能产业化。这项成果在4月在东京召开的日本农艺化学会上发表。要将酪氨酸变换成AIV酪氨酸需要酰化3位和酰化4″位的酶。先克隆4″位酰化酶基因(acyB1),  相似文献   

19.
铵离子对必特螺旋霉素组分生物合成的调控作用   总被引:1,自引:0,他引:1  
通过考察铵离子浓度对必特螺旋霉素组分的影响,证实低浓度铵离子的培养条件可以有效提高必特螺旋霉素中异戊酰螺旋霉素Ⅲ的比例。在此基础上进一步测定了高铵(62·5mmol/L)和低铵(2·5mmol/L)培养条件下的糖、铵离子、相关有机酸、缬氨酸脱氢酶酶活等中间代谢数据,结果表明高浓度铵离子培养条件下,必特螺旋霉素产生菌中亮氨酸分解代谢途径的关键酶——缬氨酸脱氢酶的活性低于低铵对照试验,造成异戊酰螺旋霉素合成过程中酰基转移反应的底物——异戊酰CoA的相对不足,从而导致异戊酰螺旋霉素组分的降低。大幅度降低铵离子浓度至2·5mmol/L,使异戊酰螺旋霉素Ⅲ的比例从5·43%提高至28·59%。但氮源的不足影响了必特螺旋霉素的产量,低铵条件下的效价为107μg/mL,相对高铵条件下降了14·4%。在低铵培养条件的基础上添加亮氨酸,可以进一步改善必特螺旋霉素的组分,异戊酰螺旋霉素Ⅲ的比例增至37·84%。  相似文献   

20.
雷帕霉素是具有很好的抗真菌、免疫抑制、抗肿瘤等活性的微生物次级代谢产物,可由吸水链霉菌(Streptomyces hygroscopicus)发酵产生。由于传统诱变育种的菌株产量较低,不能满足工业生产的需求。为了找到突破传统育种瓶颈的技术方法。本研究通过建立该菌株的遗传操作体系、构建表达载体、建立发酵、提取和检测等的研究方法,对传统诱变菌株(S.hygroscopicus17-1)进行遗传改造。首先,以整合型载体pSET152为出发载体,构建了含有自身启动子的rapG调控基因表达载体,建立并优化了该菌株的遗传操作系统,通过大肠杆菌与链霉菌属间接合转移的方法成功将rapG整合至原菌株基因组上,获得了该基因的多拷贝菌株S.hygroscopicus17-Gp。采用高压液相色谱和质谱等方法,检测分析了S.hygroscopicus17-1与S.hygroscopicus17-Gp发酵液中雷帕霉素的产量。结果表明S.hygroscopicus17-Gp发酵液中雷帕霉素的产量比原菌株提高了约40%,这为后期进行相关机制和产量提高的理论与实践研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号