首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
皮层SI区伤害感受神经元膜电生理特性研究   总被引:3,自引:0,他引:3  
用细胞内记录技术, 在16只成年健康猫, 研究了皮层第一躯体感觉区(primary somatosensory cortex area,SI区)伤害感受神经元的电生理特性.SI区伤害感受神经元自发放电频率差异大,放电形式多样.极化电流绝对值≤1.0 nA时,伤害感受神经元I-V极相关(r=0.96),整流作用不明显;极化电流绝对值>1.0 nA时,在两个方向上发生整流,I-V(电流-电压)曲线表现为“S”型, 其中伤害感受神经元整流作用较非伤害感受神经元明显.伤害感受神经元Rmτ、Cm明显大于非伤害感受神经元(P<0.01或P<0.05).结果提示SI区伤害感受神经元与非伤害感受神经元可能在细胞膜结构、细胞大小等方面存在有意义的差别,从而反映其不同的生理功能.此电学参数特点也可为痛觉的特异性学说提供实验资料.  相似文献   

2.
为了探讨糖皮质激素对海马兴奋性神经元和抑制性神经元的作用,本实验将地塞米松注入大白鼠侧脑室,2h 后经Nissl染色法、免疫组织化学方法和细胞计数法观察了海马谷氨酸免疫反应性(GluIR)神经元和γ氨基丁酸免疫反应性(GABAIR)神经元的变化。结果显示:(1)CA1、CA3 和SG区的GluIR神经元明显增多,特别是CA1 区。经细胞计数统计分析表明,与对照组相比CA1 有极显著性差异(P< 0001),CA3区有显著性差异(001< P< 005),SG处无明显差异(P> 005)。(2)与对照组相比,GABAIR神经元无明显变化。结果表明,糖皮质激素有增加海马谷氨酸能神经元的作用。尽管γ氨基丁酸能神经元无明显变化,并不表明糖皮质激素对其无影响  相似文献   

3.
应用细胞内电位记录技术,研究猫SI中内脏大神经皮质代表区的851个神经元膜电生理特性,用胞内注入极化电流的方法,测量和计算出神经元的膜电学参数,并进行内脏痛伤害感受及非相关神经元的电学特性比较,发现二者在膜电阻、时间常数、膜电容、静息电位、细胞活跃程度及神经元深度分布等方面存在差别。注电流引发的频率-电流、动作电位幅值-电流、及I-V曲线也有差异,结果提示SI区内脏伤害感受及非相关神经元在形态及膜结构上可能有不同之处,为痛觉特异学说提供资料。部分神经元用神经生物素进行细胞内电泳标记以显示功能细胞所在层次及形态,从单一皮层感受神经元的反应及形态特点探讨了内脏痛的感受特性。  相似文献   

4.
在14只隔离灌流颈动脉窦区的大鼠,观察了窦内压(ISP)升高和灌流腺苷(adenosine,Ado)激活压力感受器时延髓内cfos蛋白的表达。结果显示:在孤束核、最后区、延髓腹外侧头端区和中缝苍白核可见Fos蛋白样免疫阳性反应(FLI)神经元分布,且其数量随ISP升高而增多。在给定ISP下,颈动脉窦内灌流Ado,可使上述区域中FLI表达明显增多。根据以上结果,得出如下结论:cfos在压力感受器反射延髓通路中的表达,可由ISP增高和灌流Ado而增强,表明Ado对压力感受器反射有易化作用。  相似文献   

5.
将含有鸡传染性支气管炎病毒 S1 基因c D N A 的重组转移质粒p S X I V V I+ X3 S1 . Holte 和p S X I V V I+ X3/4 S1 . Holte 分别与粉纹夜蛾核型多角体病毒 Tn N P V S V I- G D N A( O C C- ,gal+ ) 共转染草地夜蛾( Sf9) 细胞,经空斑纯化得到重组病毒 Tn N P V( X3) S1 . Holte O C C+ 和 Tn N P V( X3/4) S1 . Holte O C C+ 。将重组毒株分别感染 Tn5 B1 细胞,并进行 S D S P A G E 与 Westernblot 检测。结果表明, Tn N P V( X3/4) S1 . Holte O C C+ 在感染的细胞中高效表达了 S1 蛋白, S D S P A G E 凝胶薄层色谱分析结果显示,感染病毒后72 h S1 蛋白的表达量占细胞内总蛋白量的35 .8 % ,而 Tn N P V( X3) S1 . Holte O C C+ 感染的细胞内检测不出 S1 蛋白。经分析认为这一差异主要来自 S1 基因翻译起始位点及其附近的周围环境。  相似文献   

6.
应激引起血压升高大鼠血管升压素V1受体mRNA水平改变   总被引:10,自引:1,他引:9  
Lu LM  Wang J  Yao T 《生理学报》1999,51(4):471-476
实验在雄性SpragueDawley 大鼠上进行。实验动物被随机分为对照组和应激组, 应激组大鼠每天给予电击足底结合噪声的应激刺激, 每日2 次, 每次2 h 。应激组大鼠在接受连续15 d 的慢性应激刺激后, 其尾动脉收缩压与对照动物相比有显著升高。对照组为16-25 ±0-63kPa (n = 7) ; 应激组为19-55 ±1-45 kPa (n = 8, P< 0-05) 。用RTPCR 结合Southern 印迹核酸分子杂交技术观察到, 血管升压素(vasopressin, AVP)V1 受体mRNA 广泛存在于大鼠下丘脑、皮质、延髓等部位以及心脏、肝脏、肾脏等组织中。用定量PCR 方法观察到, 大鼠在接受慢性应激刺激之后, 其大脑顶叶皮质、下丘脑及延髓组织中AVPV1 受体mRNA 水平均显著低于正常大鼠( 顶叶皮质: P< 0-05 ; 下丘脑: P< 0-01 ; 延髓: P< 0-001) , 而心脏、肝脏及肾脏组织中的AVPV1 受体mRNA水平与正常大鼠相比均无明显差别( 心脏: P> 0-05 ; 肝脏: P> 0-05 ; 肾脏:P> 0-05) 。上述结果提示, 慢性应激刺激可引起大鼠不同部位脑组织AVPV1 受体合成水平下调, 可能导致  相似文献   

7.
脂多糖对离体培养大鼠血管平滑肌细胞增殖的影响   总被引:2,自引:0,他引:2  
Li J  Lin SX  Li Y  Zhao HL  Jia B 《生理学报》1999,51(1):14-18
本研究观察到10-7~10-5kg/L脂多糖(lipopolysacharide,LPS)可显著促进血管平滑肌细胞(VSMC)的增殖及DNA的合成(P<005)。5×10-4~10-3kg/LLPS却抑制VSMC的增殖及DNA的合成,降低其活力(P<001),并呈时间依赖效应。一氧化氮合酶抑制剂NNitroLArginine(LNNA)可拮抗LPS的抑制作用。大剂量LPS作用组VSMC上清液中一氧化氮(NO)代谢产物NO-3和NO-2的含量与对照组相比显著增加(P<001),48h组比24h组增加91%,72h组比48h组增加45%;同时,诱导性一氧化氮合酶(inductivenitricoxidesynthase,iNOS)免疫组化染色呈阳性。结果表明,低浓度LPS促进VSMC增殖和DNA合成,而高浓度LPS却明显抑制VSMC增殖和DNA合成,降低其活力。这种抑制作用可能与LPS诱导VSMC产生的NO有关。  相似文献   

8.
为探讨妇女生殖道单纯疱疹病毒Ⅱ型(HerpesSimplesVirus2,HSV2)和人乳头瘤病毒(HumanPapilamavirus,HPV)的感染及其相关关系,我们应用聚合酶链反应(PCR)对48例患有性病、生殖道感染的妇女和39例正常妇女进行了下生道HSV2、HPV的检测。HSV2在实验组和对照组妇女中的感染率分别是729%和256%,两组有极显著性差异(P<001);HPV在实验组和对照组妇女中的感染率分别是533%和333%,两组无显著性差异(P>005);两组中HSV2、HPV双阳性率分别是458%(22/48)和231%(9/39),有显著性差异(P<005);在两组共87份标本中,HSV2和HPV双阳性者占31例,阳性率是356%。统计学分析表明:HSV2和HPV感染之间有极显著的相关性(X2=2408,P<001)。研究表明:患有生殖系感染和性病妇女其HSV2或HPV和HSV2混和感染的机率显著高于正常妇女,HSV2和HPV的感染具有协同作用。由于这两种病毒均与宫颈癌的发生有关,它们在生殖道中感染的相互作用机理有待于进一步研究。  相似文献   

9.
脑啡肽增强胶质细胞的神经营养作用与NO生成减少有关   总被引:2,自引:0,他引:2  
Wei GW  Du LN  Zhu CQ  Tang CR  Cao XD  Wu GC 《生理学报》1999,51(3):327-332
本文在SD大鼠大脑皮层胶质细胞神经元共培养模式上,以神经元存活、突起生长、生长相关蛋白43(growthasociatedprotein43,GAP43)mRNA的表达为指标,观察了脑啡肽对胶质细胞神经营养作用的影响,并对其机理作了初步探讨。结果表明,经脑啡肽处理的胶质细胞能使神经元的存活计数增加28%(P<005),单个神经元突起总长度增加11%(P<005),最长突起长度增加16%(P<005),GAP43mRNA的表达增加26%(P<005)。然后又观察了脑啡肽(10-6~10-12mol/L)对培养胶质细胞生成一氧化氮(NO)的影响。结果表明,浓度为10-8,10-10mol/L的脑啡肽能明显抑制其生成(P<005)。结果提示,脑啡肽可能增强胶质细胞的神经营养作用,其机制之一可能是通过抑制胶质细胞NO的生成。  相似文献   

10.
长白山白眉蝮蛇蛇毒磷脂酶A2的分离和初步表征   总被引:10,自引:0,他引:10  
东北长白山白眉蝮蛇(AgkistrodonblomhoffiUsurensis)蛇毒经DEAESephadexA50离子交换层析柱,连续3步SephadexG75凝胶过滤柱得到了磷脂酶A2(PLA2)的纯品。SDS聚丙烯酰胺凝胶电泳(SDSPAGE)以及基质辅助激光解析电离飞行时质谱(MALDI/TOF/MS)表征为单一蛋白,其准确分子量为(14.008±0.007)kD。最适pH范围8.0~9.0,最适的反应温度为45℃。在溶液中有多聚体的存在。  相似文献   

11.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

12.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   

13.
Zhang HH  Wang MY 《生理学报》2012,64(2):163-169
To investigate the effects of novel intravenous general anesthetic propofol on membrane electrophysiological characteristics and action potential (AP) of the supraoptic nucleus (SON) neurons and possible ionic mechanisms, intracellular recordings were conducted in SON neurons from the coronal hypothalamic slice preparation of adult male Sprague Dawley (SD) rats. The results showed that bath application of 0.1 mmol/L propofol induced a significant decline in resting potential (P < 0.01), and higher concentrations of propofol (0.3 and 1.0 mmol/L) decreased time constant and slope resistance of cell membrane (P < 0.01). Under the hyperpolarizing current pulses exceeding 0.5 nA, an anomalous rectification was induced by hyperpolarization-activated cation channel (I(h) channel) in 11 out of 18 tested SON neurons. Bath of propofol reversibly decreased the anomalous rectification. Moreover, 0.1 mmol/L propofol elevated threshold level (P < 0.01) and decreased Max L. slope (P < 0.05) of the spike potential in SON neurons. Interestingly, 0.3 and 1.0 mmol/L propofol nullified APs in 6% (1/18) and 71% (12/17) tested SON neurons, respectively. In the SON neurons where APs were not nullified, propofol (0.3 mmol/L) decreased the amplitude of spike potential (P < 0.05). The higher concentrations of propofol (0.3 and 1.0 mmol/L) decreased firing frequencies evoked by depolarizing current pulses (0.1-0.7 nA), and shifted the current intensity-firing frequency relation curves downward and to the right. These results suggest that propofol decreases the excitability of SON neurons by inhibiting I(h) and sodium channels.  相似文献   

14.
We measured the ion selectivity of cGMP-dependent currents in detached membrane patches from the outer segment of cone photoreceptors isolated from the retina of striped bass. In inside-out patches excised from either single or twin cones the amplitude of these currents, under symmetric ionic solutions, changed with the concentration of cGMP with a dependence described by a Hill equation with average values, at +80 mV, of Km = 42.6 microM and n = 2.49. In the absence of divalent cations, and under symmetric ionic solutions, the I-V curves of the currents were linear over the range of -80 to +80 mV. The addition of Ca altered the form of the I-V curve to a new function well described by an empirical equation that also describes the I-V curve of the photocurrent measured in intact photoreceptors. The monovalent cation permeability sequence of the cGMP-gated channels in the absence of divalent ions was PK > PNa = PLi = PRb > PCs (1.11 > 1.0 = 0.99 = 0.96 > 0.82). The conductance selectivity sequence at +80 mV was GNa = GK > GRb > GCs > GLi (1.0 = 0.99 > 0.88 > 0.74 > 0.60). The organic cations tetramethylammonium (TMA) and arginine partially blocked the current, but the larger ion, arginine, was permeant, whereas the smaller ion, TMA, was not. The amplitude of the outward current through the channels increased with the concentration of monovalent cations on the cytoplasmic membrane surface, up to a saturating value. The increase was well described by the adsorption isotherm of a single ion binding site within the channel with average binding constants, at +80 mV, of 104 mM for Na and 37.6 mM for Li. By assuming that the ion channel contains a single ion binding site in an energy trough separated from each membrane surface by an energy barrier, and using Eyring rate theory, we simulated I-V curves that fit the experimental data measured under ionic concentration gradients. From this fit we conclude that the binding site interacts with one ion at a time and that the energy barriers are asymmetrically located within the membrane thickness. Comparison of the quantitative features of ion permeation and interaction between the cGMP-gated channels of rod and cone photoreceptors reveals that the ion binding sites are profoundly different in the two types of channels. This molecular difference may be particularly important in explaining the differences in the transduction signal of each receptor type.  相似文献   

15.
三羟异黄酮对豚鼠心室肌细胞L-型钙通道电流的影响   总被引:2,自引:0,他引:2  
Ji ES  Yin JX  Ma HJ  He RR 《生理学报》2004,56(4):466-470
本实验用全细胞膜片钳技术观察三羟异黄酮(genistein,GST)对豚鼠心室肌细胞L-钙通道电流(ICa、L)的影响。结果如下:(1)GST(10、50、100 μmol/L)可浓度依赖性地降低ICa,L(n=6,P<0.01)。GST的非活性结构类似物daidzein(100μmol/L),在同一浓度范围对ICa,L没有影响(n=5,P>0.05)。(2)GST使I-V曲线上移,但对ICa,L的电压依赖特征和最大激活电压无明显影响。(3)GST对ICa,L的激活动力学特性也无影响,但可使钙电流稳态失活曲线左移。V0.5从对照的-28.6±0.6 mV变为-32.8±1.1mV,κ值从对照的5.8±0.5 mV升至6.5±0.9 mV(n=6,P<0.05)。(4)GST明显使复活曲线右移,从而使ICa,L从失活状态下恢复明显减慢(n=7,P<0.01)。(5)酪氨酸磷酸酶抑制剂正钒酸钠(1 mmol/L)显著对抗GST引起的ICa,L抑制效应(n=6,P<0.01)。根据以上结果得出的结论是:GST抑制ICa,L加速钙通道失活和钙通道在失活状态下恢复减慢;GST对ICa,L的这种抑制作用与蛋白酪氨酸激酶(PTK)抑制有关。  相似文献   

16.
以Ba2+为载流子,采用全细胞膜片钳法,研究了在电极液中分别加入G蛋白稳定 激活剂GTPγS(GTP类似物)和抑制剂GDPβS(GDP类似物)对棉铃虫Helicoverpaarmigera 3龄幼虫神经细胞高电压敏感钙通道的调节作用。Ba2+电流记录时间为20 min。对照组 和实验组的Ba2+电流在记录的初期均出现电流的增加现象,随后电流衰减,即“rundown ”。对照组峰电流在第20 min时降为初始值的(72.09±12.80)%。电极内液中加入2 mmol/L GTPγS可缓解电流的衰减现象,在第20 min时,峰电流为初始值的(95.99±7.93)%,明显大 于对照组的峰电流(P<0.01),而且电流 电压(I-V)关系曲线向正电压方向移动。相反 ,电极内液加入2 mmol/L GDPβS则导致峰电流衰减更加严重,第20 min时,峰电流仅为初始水 平的(41.95±9.32)%,显著小于对照组(P<0.01),但未见电流 电压(I-V)关系曲 线的明显漂移。结果表明,棉铃虫神经细胞钙通道活动受G蛋白激活剂GTPγS和G蛋白抑制剂GDPβS的影响,提示G蛋白活动水平的改变调节钙通道的电流幅值和电压依赖性。  相似文献   

17.
Three types of high-threshold K+ currents were recorded in isolated neurons of the snail Helix pomatia using a two-microelectrode voltage clamp technique: transient K+ current (I(A)), delayed rectifier (I(KD)) and Ca2+-dependent K+ current (I(K(Ca))). Vinpocetine (1-100 microM) applied to the bath affected different types of K+ current in different ways: I(A) was increased (35+/-14%), I(KD) was moderately inhibited (20+/-9%) and I(K(Ca)) was strongly suppressed (45+/-15%). When I(A) and I(K(Ca)) were present in the same cell, vinpocetine exerted a dual effect on the total K+ current, depending on the amplitude of the test stimulus. In the presence of vinpocetine, the I-V curve crossed the control I-V curve. The inhibition of I(K(Ca)) by vinpocetine between 1 and 100 microM is unlikely to be a result of Ca2+ current (I(Ca)) suppression, as the latter was inhibited only at vinpocetine concentrations exceeding 300 microM. Dibutyryl cyclic GMP (dbcGMP) (but not dbcAMP) mimicked the effects of vinpocetine in the majority of cells tested (coefficient of correlation r=0.60, P<0.05, n=22). The data suggest that modulation of different types of K+ current in neuronal membrane can contribute, at least partially, to the nootropic effect of vinpocetine through the regulation of intracellular Ca2+ concentration.  相似文献   

18.
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve.  相似文献   

19.
A novel, small conductance of Cl- channel was characterized by incorporation into planar bilayers from a plasma membrane preparation of lobster walking leg nerves. Under conditions of symmetrical 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, single Cl- channels exhibit rectifying current-voltage (I-V) behavior with a conductance of 19.2 +/- 0.8 pS at positive voltages and 15.1 +/- 1.6 pS in the voltage range of -40 to 0 mV. The channel exhibits a negligible permeability for Na+ compared with Cl- and displays the following sequence of anion permeability relative to Cl- as measured under near bi-ionic conditions: I- (2.7) greater than NO3- (1.8) greater than Br- (1.5) greater than Cl- (1.0) greater than CH3CO2- (0.18) greater than HCO3- (0.10) greater than gluconate (0.06) greater than F- (0.05). The unitary conductance saturates with increasing Cl- concentration in a Michaelis-Menten fashion with a Km of 100 mM and gamma max = 33 pS at positive voltage. The I-V curve is similar in 10 mM Tris or 10 mM HEPES buffer, but substitution of 100 mM NaCl with 100 mM tetraethylammonium chloride on the cis side results in increased rectification with a 40% reduction in current at negative voltages. The gating of the channel is weakly voltage dependent with an open-state probability of 0.23 at -75 mV and 0.64 at +75 mV. Channel gating is sensitive to cis pH with an increased opening probability observed for a pH change of 7.4 to 11 and nearly complete inhibition for a pH change of 7.4 to 6.0. The lobster Cl- channel is reversibly blocked by the anion transport inhibitors, SITS (4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid). Many of these characteristics are similar to those previously described for small conductance Cl- channels in various vertebrate cells, including epithelia. These functional comparisons suggest that this invertebrate Cl- channel is an evolutionary prototype of a widely distributed class of small conductance anion channels.  相似文献   

20.
A covalent dimer of alamethicin Rf30 was synthesized by linking the N-termini by a disulfide bond. When the dimer peptides were added to the cis-side of a diphytanoyl PC membrane, macroscopic channel current was induced only at cis positive voltages. The single-channel recordings showed several conductance levels that were alternately stabilized. These results indicate that the dimer peptides form stable channels by N-terminal insertion like alamethicin and that most of the pores are assembled from even numbers of helices. Taking advantages of the long open duration of the dimer peptide channels, the current-voltage (I-V) relations of the single-channels were obtained by applying fast voltage ramps during the open states. The I-V relations showed rectification, such that current from the cis-side toward the trans-side is larger than that in the opposite direction. The intrinsic rectification is mainly attributed to the macro dipoles of parallel peptide helices surrounding a central pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号