首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
聚丁二酸丁二醇酯(poly(butylene succinate), PBS)是一种人工合成的脂肪族聚酯化合物。PBS的生产成本低、热稳定性好,具有良好加工性能、机械性能以及力学性能等优点。本文就近年来PBS在生物降解方面的研究进展进行了综述,具体包括PBS的生物堆肥降解、PBS的微生物降解以及PBS降解酶的相关研究。最后对PBS生物降解研究进展做出了总结。  相似文献   

2.
陈四传 《动物学研究》1985,6(4):419-420
前列腺素(PGS)作为体内一种活性物质,几乎存在于哺乳动物体内的各重要组织及体液中。其含量虽微,但代谢迅速,活力很高。对机体的各系统组织具有多种生理生化效应,因而国外的研究甚为活跃。国内自1979年建立PGS的放射免疫测定方法(陈四传,1982)后,应用家兔等动物开展对PGS的实验研究日益增多。为实验设计需要,我们用放射免疫法测定了正常家兔血浆及大脑皮质、肾髓质内PGA_2、PGE_1、及PGE_(2a)含量,总结成本文。  相似文献   

3.
目的:以实验室制得的聚苹果酸(PMLA)为高分子骨架,通过酰胺化反应将多巴胺(DA)分子连接到聚苹果酸,制得既具有良好粘合性能,又有优异生物相容性的贻贝仿生粘合剂。方法:L-天冬氨酸通过内酯开环聚合法合成高分子化合物聚苹果酸,将PMLA与DA加EDC/NHS反应得到粘合剂PMLA-DA,傅里叶变换红外光谱、核磁氢谱、紫外可见光光谱等对其进行结构表征,标准曲线法测多巴胺取代度,采用搭接剪切测试法评估粘合剂对不锈钢、玻璃、猪皮三种材质的粘合强度,MTT法检测贻贝仿生粘合剂的细胞毒性,通过降解试验验证PMLA-DA的降解性能。结果:测得PMLA-DA中多巴胺的取代度能达到21.3%,搭接剪切试验测得粘合剂对猪皮的粘合强度为22.68 kPa,高于目前市场上常用的生物医用粘合剂纤维蛋白胶15.38 kPa的粘合强度,PMLA-DA对不锈钢与玻璃亦有很好的粘合性能。细胞毒性研究和体外降解试验显示PMLA-DA无细胞毒性,降解性能良好。结论:通过聚苹果酸与多巴胺反应制得贻贝仿生粘合剂PMLA-DA,该粘合剂对多种材质均具有良好的粘合力;无细胞毒性,降解性能良好,对皮肤组织的粘合强度优于目前商用的生物粘合剂纤维蛋白胶。无论是对无机材料间的粘接,或者是医学领域的伤口粘合,均具有良好的应用前景。  相似文献   

4.
聚丁二酸丁二醇酯(poly(butylene succinate),PBS)是一种人工合成的脂肪族聚酯化合物。PBS的生产成本低、热稳定性好,具有良好加工性能、机械性能以及力学性能等优点。本文就近年来PBS在生物降解方面的研究进展进行了综述,具体包括PBS的生物堆肥降解、PBS的微生物降解以及PBS降解酶的相关研究。最后对PBS生物降解研究进展做出了总结。  相似文献   

5.
PLGA的不同组成对支架材料性能的影响研究   总被引:5,自引:0,他引:5  
研究PLGA的不同组成对支架材料的力学性能、降解性能和生物学性能的影响。采用溶液浇注/颗粒沥取法制备出不同组成的PLGA多孔支架,对支架的力学性能和降解速率进行考察,同时将人真皮成纤维细胞接种于不同组成的PLGA支架材料上,培养不同时间后,检测细胞的粘附率和增殖率,以及细胞产生的总胶原含量,并通过扫描电镜观察支架上的细胞形态。结果显示,随PLA比例的增加,支架的力学强度增加,降解速率降低,但都不是线性变化。70:30比例的支架,拉伸强度最高,而70:30和80:20两种比例的支架,其降解速率没有显著性差异。PLGA不同组成的支架,均具有良好的细胞相容性,成纤维细胞粘附率和增殖率在三种比例的支架上没有显著性差异,细胞在支架表面生长良好,分泌大量的细胞外基质,细胞基本铺满整个支架。本文研究发现,PLGA的组成对支架力学性能、降解性能和生物学性能有细小但显著的影响,这将对组织构建选用PLGA支架材料提供有益的帮助。  相似文献   

6.
子宫是雌性动物前列腺素(PGS)生产的重要部位之一,又是卵巢激素作用的重要靶器官,而PGS的产生又受着甾体激素的调节和制约,并对卵泡的成熟、排卵及孕卵运行与胚泡着床等一系列的生殖生理过程,起着重要作用。本文以PGS放射免疫测定(RIA)技术,探讨了正常情期小鼠子宫组织中PGF的含量变化及其可能的生理作用,以便为进一步了解其对生殖过程的调节控制作用,奠定基础。  相似文献   

7.
熊燕飞  万里 《生物工程学报》2008,24(11):1907-1911
胶原与壳聚糖是2种具有较好生物相容性和一定力学强度的天然高分子,可在肌腱组织工程中用于细胞外基质的构建,但二者单独使用时各有不足.本研究利用二者性能上的互补,在一定的外力场作用下,采用EDC/NHS对2种天然高分子材料进行共价交联,获得具有一定空间取向和力学强度的多孔支架,然后引入细胞黏附因子RGD进行表面修饰,构建了具有较好组织相容性和细胞亲和性及适当降解速率的人工肌腱组织细胞外基质.对基质材料的力学性能、亲水性、体外降解速率等的检测和显微观察,结果显示:所构建的多孔支架材料柔软富有弹性,抗拉强度达:15.0Mpa,相应形变为:7.33%;孔隙率:79.4%;吸水率:772%;保水率:206%;在RPM1640培养液(含10%胎牛血清)和人血清中,3周总降解率分别为4.13%和37.2%,其降解速率可与肌腱修复周期相吻合,RGD修饰后材料对3T3-L1细胞具有较好的亲和性.有望成为理想的人工肌腱组织和人造皮肤细胞外基质,或整形手术的软组织填充材料.  相似文献   

8.
绍了羟基丁酸酯-羟基己酸酯共聚物的降解性、亲水性、力学性能、表面形态,改性研究、细胞相容性、降解产物的毒性等性能,并对这种材料在组织工程中的应用现状作了阐述,提出了需要改进研究的方向,指出这种微生物来源的新型生物医药材料在组织工程的应用中将具有极大的潜力。  相似文献   

9.
纳米硫铁是一种新型纳米材料,具有良好的导电性、吸附性和还原性,可以强化微生物之间的电子传递,促进污染物降解,近年来已被广泛研究。生物合成法具有污染小、成本低、反应条件温和、纳米硫铁产物性能好等优点。本文中,笔者综述了不同微生物合成纳米硫铁的相关研究进展,总结了其在强化电子传递及污染物去除方面的研究现状,并对生物纳米硫铁应用于生物电化学系统以及污染物去除的前景进行了分析和展望。  相似文献   

10.
天然多糖水凝胶具有良好的生物相容性,然而其力学性能调节幅度小,无法满足组织工程应用巨大的需求。通过纤维增强法,不仅可显著提高天然多糖水凝胶的力学性能,还能调节复合水凝胶的降解性能、促进细胞粘附、增殖与分化行为及其组织沉积。常用的天然多糖组织工程水凝胶的纤维增强方法有物理共混法、化学作用法、静电驱动法与自组装法等。本文综述了纤维增强水凝胶的结构与功能特点,讨论了纤维增强对组织工程水凝胶的意义,以期对纤维增强组织工程水凝胶的发展起到促进作用。  相似文献   

11.
12.
Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity1. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes2. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia3,4. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries5,6. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation.The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS)7 for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering.  相似文献   

13.
Fabricating individualized tissue engineering scaffolds based on the three-dimensional shape of patient bone defects is required for the successful clinical application of bone tissue engineering. However, there are currently no reported studies of individualized bone tissue engineering scaffolds that truly reproduce a patient-specific bone defect. We fabricated individualized tissue engineering scaffolds based on alveolar bone defects. The individualized poly(lactide-co-glycolide) and tricalcium phosphate composite scaffolds were custom-made by acquiring the three-dimensional model through computed tomography, which was input into the computer-aided low-temperature deposition manufacturing system. The three-dimensional shape of the fabricated scaffold was identical to the patient-specific alveolar bone defects, with an average macropore diameter of 380 μm, micropore diameters ranging from 3 to 5 μm, and an average porosity of 87.4%. The mechanical properties of the scaffold were similar to adult cancellous bone. Scaffold biocompatibility was confirmed by attachment and proliferation of human bone marrow mesenchymal stem cells. Successful realization of individualized scaffold fabrication will enable clinical application of tissue-engineered bone at an early date.  相似文献   

14.
Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth factor-β3 (TGF-β3). The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.  相似文献   

15.
One-step surfactant-free, water-droplet templating has been developed as a fabrication method for a poly(lactide-co-glycolide) (PLGA) film that can be used as a model to investigate the relationship between solvent, monomer ratio, polymer concentration and humidity on its structure. The resulting material is a honeycomb-structured film. Formation of this structure was highly sensitive to solvent, monomer ratio, polymer concentration and humidity. Surfactant-free, water-droplet templating thus allows investigation of fabrication parameters and that PLGA monomer ratio selection is important for scaffold structure but not for MG63 cell attachment and proliferation.  相似文献   

16.
Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.  相似文献   

17.
Protein- and gene-based tissue engineering in bone repair   总被引:9,自引:0,他引:9  
A tissue engineering approach to bone regeneration includes the use of a scaffold, cells and bioactive factors alone or in various combinations. Several investigators have demonstrated enhanced bone formation when the tissue-engineered construct possesses traits inherent to autogenic bone grafts, namely osteoconductivity, osteoinductivity and osteogenicity. Use of the biodegradable polymer poly(lactide-co-glycolide) in combination with bone morphogenetic protein or primary cells genetically modified to release osteogenic protein have demonstrated the ability to induce osteogenic differentiation of, and subsequent mineralization by, muscle-derived cells and mesenchymal stem cells in both in vitro and in vivo applications.  相似文献   

18.
Ifkovits JL  Wu K  Mauck RL  Burdick JA 《PloS one》2010,5(12):e15717
Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus). The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate) (PGS), with changes in fiber alignment (non-aligned (NA) versus aligned (AL)) and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO)). PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ~3-240 kPa, failing within the range of properties (<300 kPa) appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ~90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ~13% and ~16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important considerations in controlling tissue formation.  相似文献   

19.
We have previously demonstrated the feasibility of blending bioerodible polyphosphazenes with poly(lactide-co-glycolide) (PLGA) to form versatile polymeric materials with altered bioerosion properties. These studies demonstrated the effective neutralization of the acidic degradation products of PLGA by the polyphosphazene hydrolysis products. In the present study, five new polymers of dipeptide polyphosphazenes poly[(ethyl glycinato)x(glycyl-ethyl glycinato)yphosphazene] and novel blends of these polyphosphazenes with poly(lactide-co-glycolide) (PLGA) were synthesized and fabricated. The miscibility was analyzed using differential scanning calorimetry and scanning electron microscopy. Hydrogen bonding within the blends was assessed by attenuated total reflectance infrared spectroscopy. The phosphazene component of the blend contained varying ratios of the glycyl-glycine ethyl ester to the glycine ethyl ester. Poly[(ethyl glycinato)0.5(glycine ethyl glycinato)1.5phosphazene formed completely miscible blends with PLGA (50:50) and PLGA (85:15). This is ascribed to the multiple hydrogen-bonding sites within the side groups of the polyphosphazene. The components of the blend act as plasticizers for each other because a glass transition temperature for each blend was detected at a lower temperature than for each individual polymer. A hydrolysis study showed that unblended solid poly[(ethyl glycinato)0.5(glycyl ethyl glycinato)1.5phosphazene] hydrolyzed in less than 1 week. However, the blends degraded at a slower rate than both parent polymers. This is attributed to the buffering capacity of the polyphosphazene hydrolysis products, which increases the pH of the degradation media from 2.5 to 4, thereby slowing the degradation rate of PLGA.  相似文献   

20.
The purpose of this study is to formulate in situ implants containing doxycycline hydrochloride and/or secnidazole that could be used in the treatment of periodontitis by direct periodontal intrapocket administration. Biodegradable polymers [poly (lactide) (PLA) and poly (lactide-co-glycolide) (PLGA)], each polymer in two concentrations 25%w/w, 35%w/w were used to formulate the in situ implants. The rheological behavior, in vitro drug release and the antimicrobial activity of the prepared implants were evaluated. Increasing the concentration of each polymer increases the viscosity and decreases the percent of the drugs released after 24 h. PLA implants showed a slower drugs release rate than PLGA implants in which the implants composed of 25% PLGA showed the fastest drugs release. The in vitro drug release and antimicrobial activity results were compared with results of Atridox. Results revealed that the pharmaceutical formulation based on 25% PLGA containing secnidazole and doxycycline hydrochloride has promising activity in treating periodontitis in comparison with Atridox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号