首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
PLGA的不同组成对支架材料性能的影响研究   总被引:5,自引:0,他引:5  
研究PLGA的不同组成对支架材料的力学性能、降解性能和生物学性能的影响。采用溶液浇注/颗粒沥取法制备出不同组成的PLGA多孔支架,对支架的力学性能和降解速率进行考察,同时将人真皮成纤维细胞接种于不同组成的PLGA支架材料上,培养不同时间后,检测细胞的粘附率和增殖率,以及细胞产生的总胶原含量,并通过扫描电镜观察支架上的细胞形态。结果显示,随PLA比例的增加,支架的力学强度增加,降解速率降低,但都不是线性变化。70:30比例的支架,拉伸强度最高,而70:30和80:20两种比例的支架,其降解速率没有显著性差异。PLGA不同组成的支架,均具有良好的细胞相容性,成纤维细胞粘附率和增殖率在三种比例的支架上没有显著性差异,细胞在支架表面生长良好,分泌大量的细胞外基质,细胞基本铺满整个支架。本文研究发现,PLGA的组成对支架力学性能、降解性能和生物学性能有细小但显著的影响,这将对组织构建选用PLGA支架材料提供有益的帮助。  相似文献   

2.
目的:综述肌腱组织工程支架材料、细胞来源、制备技术及体外构建的研究进展.方法:查阅近期肌腱组织工程研究的相关文献,对组织工程肌腱支架的材料来源、制备技术,复合细胞种类,体外构建力学刺激等进行分析、归纳.结果:肌腱组织工程支架材料有天然材料、人工合成材料及复合材料等;制备技术包括静电纺丝和编织法等;其中支架材料的表面修饰是组织工程化肌腱构建的重要环节.与肌腱材料进行复合的种子细胞有肌腱细胞、骨髓间充质干细胞及成纤维细胞等.结论:复合材料是近年肌腱组织工程支架材料研究的重点,静电纺丝技术是一种具有潜力的支架制备技术,支架材料的表面修饰可促进细胞在支架上的黏附及肌腱的形成,种子细胞的研究仍是肌腱组织工程发展的瓶颈,周期性张力的存在为组织工程化肌腱的形成创造了条件.  相似文献   

3.
天然细胞外基质和生物体软组织固有的黏弹性是调控细胞行为和组织修复与再生过程的关键因素.基于动态建构化学反应交联得到的动态高分子水凝胶材料可有效模拟在体细胞或组织的黏弹性力学微环境,为体外调控细胞命运、揭示其力学生物学响应机制提供了重要工具,也为组织修复与再生提供了仿生支架材料.本综述在介绍天然细胞外基质及生物体软组织黏弹性的基础上,重点对仿生黏弹性水凝胶材料的设计思路、性能表征及影响因素等进行了概括和总结,并揭示了黏弹性水凝胶调控细胞、组织行为的规律及机制,最后,分析了目前该领域研究中所存在的问题并对未来发展方向进行了展望.本综述将有助于启发高分子水凝胶的仿生功能化设计思路及材料生物学效应研究,进一步拓展高分子水凝胶材料的生物医学应用.  相似文献   

4.
为提高骨组织工程支架材料的力学性能,改善其生物活性,修饰改性天然高分子,本文采用接枝共聚/冷冻干燥法制备多孔γ-聚谷氨酸/壳聚糖复合材料,通过红外吸收光谱仪(FT-IR)、扫描电子显微镜(SEM)、吸水性试验以及降解性试验等对材料进行了材料结构表征和性能评价,为其新型组织工程材料提供科学依据.结果显示:该复合材料具有多孔结构,孔径约100.29 ±40.46 μm,空隙率83.45%;该复合材料的平均吸水性为465%±38%,500 rpm离心3min后保水性能达到329%±33%;该复合材料具有良好的降解性,比壳聚糖有更好的降解性,12周降解百分率为12.96%.该共聚复合材料能有效地克服γ-聚谷氨酸和壳聚糖各自的缺点,是一种很有潜力的组织工程支架材料.  相似文献   

5.
生物可降解材料构建组织工程软骨的研究进展   总被引:3,自引:0,他引:3  
关节软骨修复困难,目前临床上治疗关节软骨损伤难以达到满意的效果。组织工程学的兴起为其提供了新的选择。本文介绍了组织工程软骨的发展历史,重点叙述了各种天然支架材料、人工合成材料、复合材料及纳米材料在软骨组织工程中的应用及其优势。目前应用的天然材料存在力学强度差及免疫源性的不足;人工合成材料降解速率快,降解产物具有细胞毒性,有待进一步完善。表面修饰等技术的应用在一定程度上克服了某些材料的不足;复合材料综合了数种材料的优点,是今后材料技术发展的方向;纳米技术的出现使新合成的材料成为纳米量级,具有了普通材料无可比拟的优势,这为组织工程材料的发展提供了新的思路。本文还对组织工程支架材料存在的问题、下一步的发展方向和前瞻性研究做了介绍。  相似文献   

6.
随着人口的年龄和预期寿命的增加,尤其是在年轻的人群中,肌腱损伤将变得更加普遍。传统的肌腱修复方法有许多不足之处,其功能重建不能令人满意。组织工程是一个发展的领域,组织工程肌腱体外的构建和体内的应用技术逐渐成熟,为临床上治疗肌腱缺损提供了一种不需要自体肌腱移植而且更加有前景的途径。在肌腱组织工程的研究中所面临的挑战和未来的发展方向为:种子细胞,新型支架材料和力学刺激。近年来肌腱干细胞的发现为种子细胞的选择提供了新思路,力学刺激对组织工程肌腱的影响也逐渐成为热点。本文就组织工程肌腱研究中种子细胞、支架材料和力学刺激的进展做一综述,并对未来的发展进行展望。  相似文献   

7.
类人胶原蛋白-透明质酸血管支架的性能及生物相容性   总被引:4,自引:0,他引:4  
将类人胶原蛋白与透明质酸按不同比例复合,控制透明质酸的终浓度(W/V)分别为0、0.01%、0.05%、0.1%,用京尼平交联,采用真空冷冻干燥方法构建出血管支架材料。通过扫描电镜、XPS分析、拉力测试、压力爆破实验、细胞毒性实验、血管支架细胞种植实验及小鼠皮下植入等方法对其表面超微结构、表面元素组成、力学性能、细胞毒性等级、细胞相容性、组织相容性进行了研究。结果表明:当透明质酸的含量为0.05%时,类人胶原蛋白-透明质酸支架的孔径比较均匀,孔隙率达94.38%,应力为(1000.8±7.9)kPa,爆破压力为(1058.6±8.2)kPa,细胞毒性实验合格,同时具有良好的细胞相容性、组织相容性及降解性能。  相似文献   

8.
目的:探讨以改性聚乳酸为细胞外基质网架构建组织工程皮肤的可行性。方法:采用盐溶法制备机械性能得到部分改进的聚乳酸多孔泡沫网架,向改进的聚乳酸网架接种真皮成纤维细胞和表皮角质形成细胞,以普通聚乳酸支架作为对照,构建组织工程皮肤。体外培养一周,对网架进行形态学观察。主要观察指标:①一般形态观察②组织学观察。结果:复层组织工程皮肤在结构上与正常皮肤相似,具有真皮、表皮双层结构。改性聚乳酸网架上有双层细胞生长,生长的细胞与网架接触,并且在其表面形成较为明显而连续的细胞层。随着培养时间的延长,发生了一系列变化:表皮部分细胞层数逐渐增多,真皮部分细胞也逐渐增多,并向表皮层深入,位于表皮与网架之间。结论:双醛淀粉作为良好的增柔剂在改善聚乳酸网架的机械性能的同时,也具有良好的细胞相容性,不影响细胞的生长增殖和代谢,可以进一步用作组织工程皮肤的支架材料。  相似文献   

9.
类人胶原蛋白-丝素蛋白血管支架的制备及性能表征   总被引:1,自引:0,他引:1  
为了提高血管支架的力学性能,将生物相容性良好的新型生物材料类人胶原蛋白(基因工程技术、高密度发酵生产)与丝素蛋白以质量比9:1、7:3、5:5复合,采用真空冷冻方法制备管状血管支架。研究了不同配比血管支架材料的表面结构、表面元素组成、力学性能、降解和生物相容性。结果表明:当类人胶原蛋白与丝素蛋白的质量比为7:3混合时,类人胶原蛋白-丝素蛋白管状支架具有均匀的多孔结构,孔径为(60±5)μm,孔隙率达到85%以上;获得了较理想的力学性能:应变为50%±5%,应力为(332±16)kPa;具有相对慢的降解速率;提高了细胞的黏附与增殖,具有良好的生物相容性。  相似文献   

10.
聚氨酯(PU)因其具有良好的生物相容性、优异的力学性能、耐磨损及易加工成型等优点,广泛应用于生物医学领域,将其加以修饰改性制备多孔结构聚氨酯,有望成为组织工程支架领域的热门材料。本文中,笔者通过热致相分离法制备多孔PU薄膜,利用肝素对多孔PU薄膜进行改性;通过血液实验证明肝素改性前后多孔PU薄膜血液相容性差异;并采用血管内皮生长因子(VEGF)对薄膜进行修饰。傅里叶红外光谱、电子光谱测试和扫描电子显微镜等分析结果表明肝素改性成功。与改性前相比,修饰肝素可以赋予多孔PU薄膜优异的抗粘附特性,有效延长薄膜的体外凝血时间,降低溶血率,避免红细胞形态学异常现象和凝集现象,同时避免补体激活和血小板激活现象。因此,肝素修饰的多孔PU薄膜展示了良好的生物相容性。此外,实验结果表明:VEGF对薄膜进行修饰,可以有效提高生物活性涂层的细胞活性,促进细胞增殖。  相似文献   

11.
In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.  相似文献   

12.
目的:比较京尼平或紫外线交联的壳聚糖/藻酸盐复合支架材料的降解率、孔隙率、含水量、细胞毒性以及生物力学等特性。方法:①按照交联方法不同分为:京尼平组、紫外线组。②扫描电镜下观察材料的表面结构以及检测材料的降解率、孔隙率、含水量、细胞毒性以及生物力学。结果:①紫外线组与京尼平组均表现为多孔隙结构,无明显差异。②紫外线组降解率高于京尼平组。③京尼平组与紫外线组的孔隙率差异无统计学意义,含水量差异比较有统计学意义。④两组均表现为较低的细胞毒性,良好的生物相容性。⑤京尼平交联组的生物力学特性较紫外线组显著提高。结论:京尼平交联的壳聚糖/藻酸盐复合支架材料,具有良好的生物学特性,为组织工程脊髓领域提供了非常具有潜力的材料。  相似文献   

13.
Multipotent stem cells have been shown to be extremely useful in the field of regenerative medicine. However, in order to use these cells effectively for tissue regeneration, a number of variables must be taken into account. These variables include: the total volume and surface area of the implantation site, the mechanical properties of the tissue and the tissue microenvironment, which includes the amount of vascularization and the components of the extracellular matrix. Therefore, the materials being used to deliver these cells must be biocompatible with a defined chemical composition while maintaining a mechanical strength that mimics the host tissue. These materials must also be permeable to oxygen and nutrients to provide a favorable microenvironment for cells to attach and proliferate. Chitosan, a cationic polysaccharide with excellent biocompatibility, can be easily chemically modified and has a high affinity to bind with in vivo macromolecules. Chitosan mimics the glycosaminoglycan portion of the extracellular matrix, enabling it to function as a substrate for cell adhesion, migration and proliferation. In this study we utilize chitosan in the form of microspheres to deliver adipose-derived stem cells (ASC) into a collagen based three-dimensional scaffold. An ideal cell-to-microsphere ratio was determined with respect to incubation time and cell density to achieve maximum number of cells that could be loaded. Once ASC are seeded onto the chitosan microspheres (CSM), they are embedded in a collagen scaffold and can be maintained in culture for extended periods. In summary, this study provides a method to precisely deliver stem cells within a three dimensional biomaterial scaffold.  相似文献   

14.
ECM is composed of different collagenous and non-collagenous proteins. Collagen nanofibers play a dominant role in maintaining the biological and structural integrity of various tissues and organs, including bone, skin, tendon, blood vessels, and cartilage. Artificial collagen nanofibers are increasingly significant in numerous tissue engineering applications and seem to be ideal scaffolds for cell growth and proliferation. The modern tissue engineering task is to develop three-dimensional scaffolds of appropriate biological and biomechanical properties, at the same time mimicking the natural extracellular matrix and promoting tissue regeneration. Furthermore, it should be biodegradable, bioresorbable and non-inflammatory, should provide sufficient nutrient supply and have appropriate viscoelasticity and strength. Attributed to collagen features mentioned above, collagen fibers represent an obvious appropriate material for tissue engineering scaffolds. The aim of this minireview is, besides encapsulation of the basic biochemical and biophysical properties of collagen, to summarize the most promising modern methods and technologies for production of collagen nanofibers and scaffolds for artificial tissue development.  相似文献   

15.
A tissue-engineering scaffold resembling the structure of the natural extracellular matrix can often facilitate tissue regeneration. Nerve and tendon are oriented micro-scale tissue bundles. In this study, a method combining injection molding and thermally induced phase separation techniques is developed to create single- and multiple-channeled nanofibrous poly(L-lactic acid) scaffolds. The overall shape, the number and spatial arrangement of channels, the channel wall matrix architecture, the porosity and mechanical properties of the scaffolds are all tunable. The porous NF channel wall matrix provides an excellent microenvironment for protein adsorption and the attachment of PC12 neuronal cells and tendon fibroblast cells, showing potential for neural and tendon tissue regeneration.  相似文献   

16.
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth.  相似文献   

17.
Influence of mechanical characteristics and matrix architecture of substrates used in cell culture is an important issue to tissue engineering. Chitosan‐based materials have been processed into porous structures, injectable gels and membranes, and are investigated to regenerate various tissues. However, the effect of these structures on cell growth and matrix production in accordance with each of the differing scaffolds has not been examined. We investigated the influence of porous structures, hydrogels, and membranes on the growth of normal human fibroblasts and their matrix production in a serum‐free system. We used chitosan alone and in combination with gelatin. Injectable hydrogels were prepared using 2‐glycerol phosphate. From the same solution, porous scaffolds and membranes were formed using controlled rate freezing and lyophilization, and air‐drying, respectively. Fibroblast growth was evaluated on the 4th and 10th days using flow cytometry and CFDA‐SE pre‐staining. Cell morphology was assessed using actin and nucleus staining. Total protein content, collagen, tropoelastin, and MMP2/MMP‐9 activity in the media supernatant were assessed by BCA, Sircol?, Fastin Elastin, and fluorogeneic peptide assays. Collagen accumulated in the matrix was assessed by Sircol? assay after pepsin/acetic acid digestion and by Masson's Trichrome staining. These results showed increased viability of fibroblasts on chitosan–gelatin porous scaffold with decreased proliferation relative to tissue culture plastic (TCP) surface despite the cells showing spindle shape. The total protein, collagen, and tropoelastin contents were higher in the spent media from chitosan–gelatin porous scaffolds compared to other conditions. MMP2/MMP9 activity was comparable to TCP. An increase in collagen content was also observed in the matrix, suggesting increased matrix deposition. In summary, matrix production is influenced by the form of chitosan structures, which significantly affects the regenerative process. Biotechnol. Bioeng. 2012; 109:1314–1325. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Collagen (Col)–chitosan (Chi) membrane was modified by a hot dehydrogenation cross-linking method. Carbodiimide was added for further crossing modification. Chondroitin sulfate (CS) was added so that Col–Chi sulfate composite membranes were prepared. The structure of the composite membranes was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and its mechanical properties, degradation, and cytotoxicity were characterized. The composite membrane was applied to a full-thickness skin injury in animal experiments performed in rabbits. Strong interactions and good compatibility among Col, Chi, and CS in the composite membrane were present. The good mechanical properties, biocompatibility, digestion resistance, and wound healing promotion of the composite membrane make it a potential wound dressing or skin scaffold for tissue engineering.  相似文献   

19.
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration through mimicry of the bone extracellular matrix in vivo. The aim of this study was to compare the collagen types I, II, and III with regard to their ability to bind the small leucine-rich proteoglycans (SLRPs) decorin and biglycan during fibrillogenesis in vitro in phosphate buffer. In addition, the influence of SLRPs on the proportion of collagen molecules incorporated into fibrils during fibrillogenesis in vitro at high and low ionic strength was investigated, as were their effects on the morphology of collagen fibrils and the speed of fibrillogenesis. Considerably more biglycan than decorin was bound by all three collagen types. Collagen II bound significantly more SLRPs in fibrils than collagen I and III. Decorin and biglycan decreased the proportion of collagen molecules of all three collagen types incorporated into fibrils in similar fashion. Biglycan affected neither fibril diameter nor the speed of fibrillogenesis. Decorin reduced the fibril diameter of all three collagen types. The differences in SLRP-binding ability between collagen types could be of significance when selecting collagen type and/or SLRPs as scaffold materials for tissue engineering or implant coatings.  相似文献   

20.
A scaffold harboring the desired features such as biodegradation, biocompatibility, porous structure could serve as template for bone tissue engineering. In the present study, chitosan (CS), nano-scaled silicon dioxide (Si) and zirconia (Zr) were combined by freeze drying technique to fabricate a bio-composite scaffold. The bio-composite scaffold (CS/Si/Zr) was characterized by SEM, XRD and FT-IR studies. The scaffold possessed a porous nature with pore dimensions suitable for cell infiltration and colonization. The presence of zirconia in the CS/Si/Zr scaffold decreased swelling and increased biodegradation, protein adsorption and bio-mineralization properties. The CS/Si/Zr scaffold was also found to be non-toxic to rat osteoprogenitor cells. Thus, we suggest that CS/Si/Zr bio-composite scaffold is a potential candidate to be used for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号