首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
刘拥海  俞乐 《广西植物》2004,24(2):184-187
分别从荞麦与大豆叶片中部分纯化了乙醇酸氧化酶 (GO ,EC1 .1 .3 .1 ) ,并研究其部分性质。结果显示荞麦与大豆叶片中GO的催化特性有明显差异 :大豆叶片中GO对乙醇酸Km值为 0 .3 1mmol/L ,对乙醛酸Km值为 1 .98mmol/L。外源草酸对GO氧化乙醇酸活性影响很小 ,但对其氧化乙醛酸活性抑制明显 ,5mmol/L草酸可抑制 44%。而荞麦叶片中GO性质有所不同 :GO对乙醇酸Km为 0 .46mmol/L ,对乙醛酸Km为 0 .85mmol/L。草酸对荞麦GO氧化乙醇酸活性影响也很小 ,对其氧化乙醛酸活性的抑制作用明显小于大豆 ,5mmol/L草酸只抑制 2 4%。上述研究结果表明 ,荞麦GO对乙醛酸的亲和力明显强于大豆 ,并且草酸对其GO氧化乙醛酸活性影响较小。因此相对于大豆而言 ,GO可能在荞麦叶片草酸合成中起重要作用。  相似文献   

2.
为研究氟代柠檬酸(Fluorocitrate)对体外培养的神经胶质瘤细胞生长的影响,采用MTT法研究不同的氟代柠檬酸浓度(0.0025mmol/L,0.005mmol/L,0.01 mmol/L,0.025mmol/L和0.1 mmol/L)和作用时间(36h,48h和60h)对神经胶质瘤细胞G422增殖的影响.结果发现:(1)氟代柠檬酸可抑制G422细胞的增殖,并且其抑制作用随氟代柠檬睃浓度的增加而增强;(2)高浓度(0.01 mmol/L,0.025 mmol/L和0.1 mmol/L)氟代柠檬酸对G422细胞的增殖抑制作用随作用时问的延长而增强:(3)低浓度(0.0025mmol/L和0.005mmol/L)氟代柠檬酸对G422细胞的增殖抑制作用不随作用时间的延长而改变.实验表明,氟代柠檬酸能够抑制神经胶质瘤细胞的增殖,其抑制能力随氟代柠檬酸浓度的增加和作用时间的延长而加强.  相似文献   

3.
血管平滑肌细胞的体外氧化应激反应及雌激素的影响   总被引:1,自引:0,他引:1  
目的探讨雌激素对VSMC氧化应激反应的影响及机制。方法第3-4代雌性大鼠血管平滑肌细胞(VSMC)在有或无10-8mol/L 17b-雌二醇(E2)存在下用不同浓度(0-250mmol/L)H2O2诱导氧化应激;MTT法,流式细胞术,Western blot分别检测VSMC活力,细胞周期,MAPK信号通路活性的变化。结果当浓度低于25mmol/L时,H2O2对VSMC活力无影响;当浓度为50-150mmol/L时,VSMC活力呈剂量依赖性下降,并伴随G0/G1期细胞升高;当浓度达到200mmol/L时,细胞活力下降至最低点并出现凋亡峰。10-8mol/L E2可显著抑制150mmol/L H2O2诱导的VSMCERK和p38的磷酸化、从而缓解VSMC G0/G1期阻滞,并降低高浓度H2O2诱导的VSMC凋亡。结论中等浓度的H2O2(50-150mmol/L)抑制VSMC增殖;高浓度H2O2(≥200mmol/L)不仅抑制VSMC生长、且导致部分VSMC凋亡;雌激素可通过抑制ERK和p38活性对氧化应激的VSMC起保护作用。  相似文献   

4.
通过草酸及其与不同抑制剂亚甲基蓝、EGTA、氯丙嗪和Li+组合处理黄瓜叶片,研究了草酸与抑制剂不同处理组合方式对黄瓜叶片POD活性和叶片病情指数的影响,探讨NO、钙信使系统在草酸诱导叶片抗霜霉病中的作用.结果显示,10~70mmol/L草酸均能不同程度诱导黄瓜叶片POD活性的升高,提高叶片对黄瓜霜霉病的抗病性,降低叶片病情指数,并以30mmol/L效果最好.4种抑制剂分别与30mmol/L草酸同时或先于草酸处理,或草酸处理后一定时间再用抑制剂处理,均明显抑制黄瓜叶片POD活性的升高及病情指数的降低.研究表明,NO、Ca2+、钙调素(CaM)和磷酸肌醇均可能参与了草酸诱导黄瓜霜霉病抗性的信号转导过程.  相似文献   

5.
首先从菠菜叶片中纯化了乙醇酸氧化酶(GO)。通过鉴定反应中氧的消耗以及反应产物H2O2的生成,证实菠菜GO具有氧化光呼吸途径中间代谢物甘油酸的活性。该氧化活性依赖于辅因子FMN和FAD,而不依赖核黄素和光黄素;其最适反应pH值为8.0,Km(甘油酸)值为7.14mmol/L,kcat值为1.04s^-1,活化能为17.29kJ/mol;草酸和丙酮酸对该氧化活性有明显的抑制作用,其中前者为典型的竞争性抑制。进一步通过两底物竞争作图表明:菠菜叶片GO氧化甘油酸反应和氧化乙醇酸反应为同一活性中心所催化。  相似文献   

6.
以云南特有濒危树种黑黄檀(Dalbergia fusca)的种子为材料,研究了脱落酸(ABA)对种子萌发的抑制作用,以及种子萌发过程中吲哚乙酸(IAA)、赤霉酸(GA_3)、6-苄基腺嘌呤(6-BA)和乙烯利对ABA的拮抗作用.黑黄檀种子萌发的适宜温度为30℃.交替光照(14 h光照和10 h黑暗)以及黑暗对种子萌发没有明显的影响.0.001~0.1 mmol/L ABA不影响种子的萌发率,但降低种子的萌发进程;1 mmol/L和2.5mmol/L ABA显著地抑制种子的萌发率和萌发进程.种子的萌发率不被0.0001~1 mmol/L IAA和GA3、0.0001~0.1 mmol/L 6-BA、以及0.001~10 mmol/L 乙烯利(乙烯供体)的影响,但被1 mmol/L 6-BA抑制.1mmol/L ABA对种子萌发的抑制作用能被0.01~1 mmol/L IAA、0.01~1 mmol/L GA3、0.001~0.1 mmol/L 6-BA和0.1~10 mmol/L乙烯利所拮抗,而且这种拈扰作用与植物激素的类型和浓度有关.0.01 mmol/L 6-BA和0.1 mmol/L乙烯利对l mmol/L ABA抑制作用的拈抗不能被添加0.001 mmol/L IAA或者O.001 mmol/L GA3加成.但0.1 mmol/L 乙烯利对1 mmol/L ABA抑制作用的拮抗能够被添加O.01 mmol/L 6-BA或者0.1 mmol/L 6-BA加成,导致更高的萌发率和幼苗生长.  相似文献   

7.
小麦种子成熟和萌发过程中的假萌发素活性   总被引:1,自引:0,他引:1  
用SDS-PAGE方法研究了假萌发素(ψG)在小麦种子成熟和萌发过程中活性的变化.结果表明:在种子成熟过程中只有ψG表达,扬花后10 d,在颖壳、内外桴、种皮和果皮中皆可检测到ψG的草酸氧化酶活性,随着发育进程的推进,ψG的活性增大.在种子萌发过程中,在小麦品种中育5号的维管束过渡区中除了萌发素G和G'外,还可检测到ψG的草酸氧化酶活性.由于ψG在种子成熟过程中主要存在于颖壳、内外桴、果皮及种皮这些保护组织中,且开始大量表达的时间正是生长接近停止时,于是推测ψG很可能通过降解草酸产生H2O2而推动这些组织细胞壁的木质化.  相似文献   

8.
一定浓度的甲醛可以引起蛋白质的异常修饰、功能丧失、细胞死亡。虽然甲醛的细胞毒性已见报道,但甲醛影响神经细胞周期及其分子机制等尚不明确.本文采用不同浓度甲醛与神经母细胞瘤细胞系SH-SY5Y共孵育,观察到甲醛对细胞周期的影响取决于甲醛的浓度.当甲醛浓度([FA])≤0.1 mmol/L(细胞培养48 h),细胞周期与对照相比,无显著性差异.当甲醛浓度增加(0.1 mmol/L <[FA]≤0.2 mmol/L),S期和G2/M期细胞比例显著增加;当[FA] = 0.3 mmol/L时,细胞增殖被显著抑制,大量细胞滞留在S期(46.28%),G2/M期细胞仅占16.05%.将细胞同步到G2/M期,用0.1~0.3 mmol/L甲醛孵育,尽管G2/M期细胞都有一定程度的减少,但S期细胞显著增加;将细胞同步化到S期,与0.1 mmol/L甲醛孵育,则G2/M期细胞有一定程度的减少;与0.3 mmol/L甲醛孵育,表现为G2/M细胞显著减少,S期细胞极度增加.在相同条件下,Sprague-Dawley (SD)大鼠原代皮层神经元,也表现出G2/M期细胞比例随甲醛浓度升高而降低,S期细胞比例随之增加的现象.当0.1 mmol/L≤[FA]≤0.2 mmol/L时,细胞出现明显的早期或晚期凋亡;当[FA]≥0.3 mmol/L时,DNA损伤明显,细胞出现凋亡和部分坏死.以上结果提示,低浓度甲醛(0.1 mmol/L≤[FA]≤0.2 mmol/L)主要通过引起DNA超甲基化而抑制S期DNA的合成,高浓度甲醛([FA]≥0.3 mmol/L)则造成DNA的损伤,从而影响细胞周期的进程.  相似文献   

9.
对链霉菌G4的产酶发酵条件和溶菌特性进行研究结果表明:蔗糖30 g/L、大豆蛋白胨12.5 g/L、牛肉膏2 g/L,对产酶最为有利;G4溶菌酶最适培养温度33 ℃,培养时间72 h,培养基初始pH 8.G4溶菌酶的最适作用温度和最适作用pH分别是55 ℃和6.5,多数金属离子会抑制G4溶菌酶的活性,其中Zn2+、Cu2+、Fe2+、 Pb2+几乎可以使其完全失活;对几种细菌、酵母菌的研究表明,G4溶菌酶对卵清溶菌酶不能作用的变形链球菌和金黄色葡萄球菌有很强的溶解活性.  相似文献   

10.
研究了芳腈水合酶催化水合3-氰基吡啶生成尼克酰胺的反应条件及影响因子.酶反应的最适pH为8.0,最适温度为25℃.酶在pH8.5于25℃保温4小时或在25—30℃于pH8.0保温3小时是稳定的.反应液中加入Fe~(3+)(1.5 mmol/L)可使酶活力增加 50%,而加入NH_4~+(300 mmol/L)则使酶活降低了67%.Ag~+和 Hg(2+)”强烈地抑制酶反应活性,在浓度均为 5mmol/L时,抑制率分别为99.7%和100%.NaCN(50 mmol/L)和苯甲腈(100 mmol/L)对酶活性的抑制率分别为78%和85%.该酶作用于 3-氰基吡啶的Km为62.5 mmol/L,V_(max)为85.8 μmol·min~(-1)·mg~(-1).  相似文献   

11.
An oxalate oxidase was purified to apparent homogeneity from the leaves of 10-days old seedlings of forage Sorghum (Sorghum vulgare var. KH-105). The enzyme had a Mr of 124 kDa with two identical subunits, an optimum pH of 4.5, optimum temperature of 37 degrees C and activation energy (Ea) of 2.0338 Kcal/mol. The rate of reaction was linear up to 7 min. K(m) value for oxalate was 0.22 mM. The enzyme was stimulated by Cu2+ and inhibited by EDTA, NaCN, diethyldithiocarbamate, Na2SO4, but unaffected by NaCl at 0.1 mM concentration. Although the enzyme was stimulated by flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), UV and visible spectra of the enzyme did not match with that of a flavoprotein. The positive reaction of the enzyme with orcinol-H2SO4 reagent indicated its glycoprotein nature. The superiority of the purified enzyme over earlier reported oxalate oxidases for determination of urinary oxalate has been demonstrated.  相似文献   

12.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

13.
Transfer of reducing equivalents from NADPH to the cytochromes P450 is mediated by NADPH-cytochrome P450 oxidoreductase, which contains stoichiometric amounts of tightly bound FMN and FAD. Hydrogen bonding and van der Waals interactions between FAD and amino acid residues in the FAD binding site of the reductase serve to regulate both flavin binding and reactivity. The precise orientation of key residues (Arg(454), Tyr(456), Cys(472), Gly(488), Thr(491), and Trp(677)) has been defined by x-ray crystallography (Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411-8416). The current study examines the relative contributions of these residues to FAD binding and catalysis by site-directed mutagenesis and kinetic analysis. Mutation of either Tyr(456), which makes van der Waals contact with the FAD isoalloxazine ring and also hydrogen-bonds to the ribityl 4'-hydroxyl, or Arg(454), which bonds to the FAD pyrophosphate, decreases the affinity for FAD 8000- and 25,000-fold, respectively, with corresponding decreases in cytochrome c reductase activity. In contrast, substitution of Thr(491), which also interacts with the pyrophosphate grouping, had a relatively modest effect on both FAD binding (100-fold decrease) and catalytic activity (2-fold decrease), while the G488L mutant exhibited, respectively, 800- and 50-fold decreases in FAD binding and catalytic activity. Enzymic activity of each of these mutants could be restored by addition of FAD. Kinetic properties and the FMN content of these mutants were not affected by these substitutions, with the exception of a 3-fold increase in Y456S K(m)(cyt )(c) and a 70% decrease in R454E FMN content, suggesting that the FMN- and FAD-binding domains are largely, but not completely, independent. Even though Trp(677) is stacked against the re-face of FAD, suggesting an important role in FAD binding, deletion of both Trp(677) and the carboxyl-terminal Ser(678) decreased catalytic activity 50-fold without affecting FAD content.  相似文献   

14.
To better comprehend the role of gill ion regulatory mechanisms, the modulation by Na(+), K(+), NH(4)(+) and ATP of (Na(+), K(+))-ATPase activity was examined in a posterior gill microsomal fraction from the hermit crab, Clibanarius vittatus. Under saturating Mg(2+), Na(+) and K(+) concentrations, two well-defined ATP hydrolyzing sites were revealed. ATP was hydrolyzed at the high-affinity sites at a maximum rate of V=19.1+/-0.8 U mg(-1) and K(0.5)=63.8+/-2.9 nmol L(-1), obeying cooperative kinetics (n(H)=1.9); at the low-affinity sites, hydrolysis obeyed Michaelis-Menten kinetics with K(M)=44.1+/-2.6 mumol L(-1) and V=123.5+/-6.1 U mg(-1). Stimulation by Na(+) (V=149.0+/-7.4 U mg(-1); K(M)=7.4+/-0.4 mmol L(-1)), Mg(2+) (V=132.0+/-5.3 U mg(-1); K(0.5)=0.36+/-0.02 mmol L(-1)), NH(4)(+) (V=245.6+/-9.8 U mg(-1); K(M)=4.5+/-0.2 mmol L(-1)) and K(+) (V=140.0+/-4.9 U mg(-1); K(M)=1.5+/-0.1 mmol L(-1)) followed a single saturation curve and, except for Mg(2+), obeyed Michaelis-Menten kinetics. Under optimal ionic conditions, but in the absence of NH(4)(+), ouabain (K(I)=117.3+/-3.5 mumol L(-1)) and orthovanadate inhibited up to 67% of the ATPase activity. The inhibition studies performed suggest the presence of F(0)F(1), V- and P-ATPases, but not Na(+)-, K(+)- or Ca(2+)-ATPases as contaminants in the gill microsomal preparation. (Na(+), K(+))-ATPase activity was synergistically modulated by NH(4)(+) and K(+). At 20 mmol L(-1) K(+), a maximum rate of V=290.8+/-14.5 U mg(-1) was seen as NH(4)(+) concentration was increased up to 50 mmol L(-1). However, at fixed NH(4)(+) concentrations, no additional stimulation was found for increasing K(+) concentrations (V=135.2+/-4.1 U mg(-1) and V=236.6+/-9.5 U mg(-1) and for 10 and 30 mmol L(-1) NH(4)(+), respectively). This is the first report to detail ionic modulation of gill (Na(+), K(+))-ATPase in C. vittatus, revealing an asymmetrical, synergistic stimulation of the enzyme by K(+) and NH(4)(+), as yet undescribed for other (Na(+), K(+))-ATPases, and should provide a better understanding of NH(4)(+) excretion in pagurid crabs.  相似文献   

15.
An enzyme with FAD pyrophosphatase activity was extracted from human placental syncytiotrophoblast microvilli and purified to near-homogeneity. The enzyme has been identified as 5'-nucleotidase by several criteria. Throughout purification, parallel increases in the specific activities of FAD pyrophosphatase and AMP phosphatase were observed. The enzyme was a glycoprotein with a subunit molecular weight of 74,000. EDTA treatment resulted in a marked decline in both activities, and restoration of FAD pyrophosphatase activity but not 5'-nucleotidase activity was accomplished by the addition of Co2+ or, to a lesser extent, Mn2+. The substrate specificity of the 5'-nucleotidase activity that we observed agreed closely with the results of others. The pyrophosphatase activity was relatively specific for FAD. ADP, ATP, NAD(H), and FMN were not hydrolyzed, and ADP strongly inhibited both activities. For FAD pyrophosphatase activity, a Km of 1.2 x 10(-5) M and a Vmax of 1.1 mumol/min/mg protein were determined in assays performed in the presence of Co2+. In the absence of added Co2+, the Vmax declined but the Km was unchanged. For 5'-nucleotidase (AMP as substrate) the Km was 4.1 x 10(-5) M and the Vmax 109 mumol/min/mg protein. Hydrolysis of FMN to riboflavin was observed in partially purified detergent extracts of microvilli that contained alkaline phosphatase activity and lacked FAD pyrophosphatase and 5'-nucleotidase activity. The presence of both FAD pyrophosphatase and FMN phosphatase activities in syncytiotrophoblast microvilli supports the view that the placental uptake of vitamin B2 involves the hydrolysis of FAD and FMN to riboflavin which is then absorbed, a sequence postulated for intestinal absorption and liver uptake.  相似文献   

16.
Apoptosisorprogrammedcelldeath(PCD)isaprocessofcelldeletionwhichoccursinresponsetoanumberofcytotoxicandphysiologicallyrelevantstimuli.Thisprocessischaracterizedbyseveralearlymorphologicalterationsincludingplasmaandnuclearmembraneblebbing.Endogenousendo…  相似文献   

17.
The aim of this paper was to investigate the mechanism(s) involved in the sodium oxalate pro-oxidative activity in vitro and the potential protection by diphenyl diselenide ((PhSe)(2)) and diphenyl ditelluride ((PhTe)(2)) using supernatants of homogenates from brain, liver and kidney. Oxalate causes a significant increase in the TBARS (thiobarbituric acid reactive species) production up to 4mmol/l and it had antioxidant activity from 8 to 16mmol/l in the brain and liver. Oxalate had no effect in kidney homogenates. The difference among tissues may be related to the formation of insoluble crystal of oxalate in kidney, but not in liver and brain homogenates. (PhSe)(2) and (PhTe)(2) reduced both basal and oxalate-induced TBARS in rat brain homogenates, whereas in liver homogenates they were antioxidant only on oxalate-induced TBARS production. (PhSe)(2) showed a modest effect on renal TBARS production, whereas (PhTe)(2) did not modulate TBARS in kidney preparations. Oxalate at 2mmol/l did not change deoxyribose degradation induced by Fe(2+) plus H(2)O(2), whereas at 20mmol/l it significantly prevents its degradation. Oxalate (up to 4mmol/l) did not alter iron (10micromol/l)-induced TBARS production in the brain preparations, whereas at 8mmol/l onwards it prevents iron effect. In liver preparations, oxalate amplifies iron pro-oxidant activity up to 4mmol/l, preventing iron-induced TBARS production at 16mmol/l onwards. These results support the antioxidant effect of organochalcogens against oxalate-induced TBARS production. In addition, our results suggest that oxalate pro- and antioxidant activity in vitro could be related to its interactions with iron ions.  相似文献   

18.
The role of riboflavin (RFN), FAD or FMN in modulating the antiviral activity of poly r(A-U) was examined by the human foreskin fibroblast-vesicular stomatitis virus bioassay in which the concentrations of poly r(A-U) was fixed at 0.1 mM or 0.2 mM while the riboflavin, FAD or FMN concentration was varied to produce variable RFN (or FAD or FMN)/ribonucleotide ratios ranging from 1/16 to 2/1. Riboflavin, FAD and FMN tested individually did not exhibit any antiviral activity, while poly r(A-U) alone exhibited antiviral activity. When poly r(A-U) was combined with riboflavin, FAD or FMN, the antiviral activity was potentiated seven- to twelve-fold at RFN (or FAD or FMN)/ribonucleotide ratios in the region of 1/4.  相似文献   

19.
Frontal gel chromatography is an accurate method to obtain the total free ligand concentration of a protein-ligand mixture in which ligands self-associate. The average number of bound ligands per protein molecule is obtained as a function of the total free ligand concentration. The method was applied to the interaction of bovine serum albumin with self-associating flavins. The binding curves for FMN and FAD leveled off at about 0.7 and 0.5, respectively. These data were simulated well by a binding model where flavins undergo isodesmic indefinite self-association and the monomer alone binds to a single binding site of albumin. The isodesmic association constants of FMN and FAD were (1.7 +/- 0.1) x 10(2) and (2.2 +/- 0.3) x 10(2) M(-1), respectively. The binding constants of the monomer of FMN and FAD were (7.6 +/- 0.2) x 10(2) and (3.5 +/- 0.2) x 10(2) M(-1), respectively. FMN competitively inhibited the binding of FAD to albumin. The affinity to flavins was in the following order at pH 5.8: lumiflavin, FMN, riboflavin, and FAD. The SH modification and the binding of palmitate did not affect the FMN binding to bovine albumin at pH 5.8. As pH increased from 5.8 to 9.0, the affinity to FMN of bovine albumin decreased 3-fold, whereas that of human albumin increased about 80-fold. The present study clearly showed how isodesmic self-association of a ligand can cause apparent saturation of the interaction of a protein with the ligand at levels lower than 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号