首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
城市生态网络空间评价及其格局优化   总被引:7,自引:0,他引:7  
张远景  俞滨洋 《生态学报》2016,36(21):6969-6984
合理的城市生态网络空间格局对于保障城市生态环境可持续发展具有重要意义。以哈尔滨中心城区为研究区,基于景观生态学"斑块-廊道-基质"理论,识别研究区生态源、生态廊道、生态节点和生态基质,分析生态网络连接度强弱的空间分布情况,运用GIS技术和CA-Marcov模型对生态网络格局进行模拟优化。研究结果表明:(1)研究区内部生态源较外部生态源与外界联系较密切;周边地区生态源或生态节点与生态廊道连接数目较少;中北部与西南部生态廊道连接度较差,东部生态廊道连接度处于中等水平,中部个别生态廊道连接度较好;转入的大型生态用地大片集中,转入的小型生态用地零星分布。(2)优化后的生态源地在东西方向与南北方向形成集中连片态势,大型生态源地间彼此连接程度较高;大型生态源之间,以及大型生态源与小型生态源之间构成大型生态廊道,是研究区内主要生态廊道网络;研究区小型生态源之间构成小型生态廊道,是研究区内次要生态廊道网络;研究区周边及研究区中心处60%的区域为生态节点盲区,应加强生态节点盲区生态建设;新增加的大部分生态用地,主要集中分布在水域生态源地周边,还有部分分布在绿地生态源地和风景区生态源地周边,其余少量新增加的生态用地零星分布在林地生态源地周边。研究成果为中心城区尺度的生态环境保护和城市规划提供科学的依据。  相似文献   

2.
基于"三生空间"土地利用功能转型与生态环境效应的研究是雄安新区完善区域生态功能的理论基石。从雄安新区"生产-生活-生态"的土地利用功能分类入手,解译1988、1998、2008和2018年4期遥感影像获取雄安新区土地利用变化数据,计算生态环境质量指数和土地利用转型生态贡献率,定量分析雄安新区"三生空间"的时空演变及其功能转型的生态环境效应。研究表明:①1988-2018年,雄安新区土地利用变化主要表现为生活用地面积持续增加,共计增加了82.35 km2,生产用地面积先升后降,累计增加了50.34 km2,生态用地面积大幅下降,共计减少了132.70 km2。②雄安新区土地利用功能转型转出面积最大的为水域生态用地,转出面积共计94.36 km2,占总转出面积的41.06%,转入面积最大的是农业生产用地,共计135.91 km2,占总转入面积的近三分之二,其他它用地类型均有一定程度的相互转换。③雄安新区生态环境质量指数呈现波动减少的变化趋势。沙地等生态质量指数较低的其他生态用地转入农业生产用地是雄安新区生态环境质量改善的主导因素,占生态环境正效应贡献率的67.04%;农业生产用地以及城镇和农村生活用地对水域生态用地的占用,则是导致生态环境质量恶化的重要因素,占到生态环境负效应贡献率的75%以上。总体看来,过去三十年雄安新区生态环境恶化趋势大于生态环境改善趋势。因此,定量研究过去30年土地利用功能转型特征及其生态环境效应演变规律,有助于为雄安新区生态文明建设的推进提供数据支撑。  相似文献   

3.
屠越  刘敏  高婵婵  孙彦伟  蔡超琳  苏玲 《生态学报》2022,42(17):7056-7067
构建生态安全格局是保障城市生态安全的必要手段,科学识别生态源地是构建生态安全格局的基础。以高度城市化的大都市区--上海市为研究对象构建生态源地识别体系,探究不同土地利用数据源与指标权重对生态源地识别的影响。在此基础上,基于最小累积阻力模型(MCR)与电路理论构建生态阻力面,识别生态保护与修复优先区域,对已有研究仅关注保护/修复的情况进行补充。结果表明:(1)自然生态本底仍是识别生态源地的重要指标,加入人类需求指标可填补已有研究对高度城市化源地识别针对性和丰富性的不足。生态系统服务格局、生态环境安全格局与环境友好格局权重为5 ∶ 2 ∶ 1时,源地识别效果最佳。(2)上海市生态源地空间和数量分布极不均匀,破碎化是首要问题。上海市现有(2017年)生态源地202个,共920.96 km2,占总面积14.53%,其中微型源地(面积<3 km2)数量高达82.67%。城市化水平影响生态源地分布,外环是源地数量与总面积的分水岭,郊环是源地平均面积的重要界线。(3)上海市以"面(源地)-线(廊道)-点(优先点)"组成生态保护网络,其中生态廊道442条,生态保护优先点306个,重要点线分布集中于中心城区边界。上海市生态修复优先区域325.47 km2,其中障碍点309.78 km2,需优化的非生态斑块95个(15.69 km2),大都市区的生态修复重点区域应聚焦于城市化扩散的阻力区域,且应多关注生态价值适中的草地与耕地。研究工作可为其他高度城市化区域,以及处于高速城市化发展进程城市的国土空间生态修复关键区识别提供借鉴与参考。  相似文献   

4.
冯舒  唐正宇  俞露  郭晨  汤沫熙  杨志鹏 《生态学报》2022,42(20):8223-8237
城市群生态网络构建是城市与区域协同发展面临的重要场景之一,合理的生态网络能加强生态源地间的连通性,提高生态系统的生态功能,有效缓解生态环境问题,对保障城市与区域生态安全,提升人类福祉具有重要意义。以粤港澳大湾区城市群为例,以场景为依托开展生态网络协同构建场景要素与协同路径分析,结合景观连通性和形态学空间格局分析方法(MSPA)获得生态源地,并基于最小累积阻力模型识别生态廊道与生态节点,构建大湾区生态网络总体格局,最后从跨区域协作角度探讨城市群生态网络协同构建的潜在路径。研究结果表明:(1)研究区生态网络由40个生态源地、780条潜在生态廊道与892个生态节点构成,生态源地面积1.88万km2,占湾区总面积比例为33%,所识别的生态源地及生态廊道与自然保护区、广东省万里碧道、珠江三角洲绿道网重合程度较高;(2)识别跨区域生态廊道552条,其中,跨越佛山与广州市的生态廊道较多,一半以上的廊道跨越三个及以上城市,跨陆海区域的生态廊道连接了湾区南部主要沿海城市,构成陆海生态网络的关键组成部分;(3)提出城市群生态网络协同构建的潜在模式,应结合生态源地、生态廊道、生态节点等构建主体,分析城市内、城市间生态网络构建过程涉及的协同需求、协同对象,探索差异化的协同路径;(4)以场景为依托识别城市群生态网络构建场景的主题、时空特征、对象、路径和价值,可为进一步开展生态网络协同构建与应用示范过程提供指导。本研究是对城市群生态网络协同建设的有益探索,基于跨区域生态廊道协同构建场景模式的探讨能够为今后进一步探索区域统筹协同机制、实现景观格局协同构建和优化、促进区域生态共建共享提供理论依据。  相似文献   

5.
京津冀城市群生态网络构建与优化   总被引:3,自引:0,他引:3  
生态安全是人类生活的基本保障,快速城镇化致使大型生态源地破碎化、岛屿化,生态环境问题日益严重。构建生态网络不仅能加强生态源地间的连通性,完善生态功能,还能提高生态系统的综合能力,改善恶化的生态环境问题。以京津冀为研究区,基于地理空间分析技术确定京津冀生态源地,对研究区内的林地、湿地、草地,结合生态红线等进行区域叠加从而完成源地提取;基于最小成本路径方法,考虑土地利用及高程影响因子,提取京津冀城市群生态廊道,分析统计廊道分布情况;结合重力模型与重要生态源地连通性筛选出京津冀重要生态廊道,叠加现有国道、河流构建生态网络,对重要生态节点进行分析。研究结果表明,生态源地面积占研究区总面积比例为21.76%,林地、湿地、草地面积占总生态源地面积分别为82.78%,11.05%,6.17%;不同地貌区域生态源地类型不同,林地主要分布在山区,湿地主要分布在平原区域,草地主要分布在研究区西北部;景观成本值平原区域高于草原和山区,北京、天津、石家庄城区及周边景观成本值最高;采用最小成本路径模型提取廊道579条,其中张家口、承德区域生态网络较好,平原区域生态源地及生态节点缺失较为严重。最后,对北京、天津、白洋淀、衡水湖等重点生态区域提出修复和保护意见,为京津冀城市群发展提供参考。此外,本研究对其他地区生态网络的构建提供理论依据与技术支持。  相似文献   

6.
快速城市化直接导致生境日益破碎化,景观连通性和生态系统稳定性降低,环境不断恶化。构建完善的生态网络能够有效缓解快速城市化带来的系列生态环境问题,是城市生态系统修复、生物多样性保护的重要途径。以北京市大兴区为例,基于2019年6-8月高分辨率遥感影像分类解译提取的土地覆盖数据,应用形态学空间格局分析(MSPA)和景观连通性评价方法识别提取了生态源地,通过构建生态阻力面和运用最小累积阻力模型(MCR)识别了潜在生态廊道并应用重力模型对廊道系统进行了重要性分级,最后采用网络指数对研究区生态网络进行评价和优化,提出了有针对性的生态网络优化对策。结果表明:研究区核心区面积为349.42km2,占研究区总面积的33.73%;生态源地16块,总面积85.15km2,占总面积的8.2%;潜在生态廊道120条、生态节点49个,其中一级生态廊道39条、二级生态廊道81条。在生态网络优化方面,新增4块生态源地、70条规划生态廊道和17个生态节点,规划建设20处"踏脚石",识别修复72个主要生态断裂点。实施这些优化措施后,网络闭合(α)指数、点线率(β)指数、网络连接度(γ)指数均有所提高,表明生态网络连接度得到有效优化。研究区虽具备较丰富的绿地资源,但在快速城市化过程中出现了生态斑块破碎化、分布不均衡、连通性较差等生态问题,生态源地和廊道主要分布在西部、南部永定河流域绿地以及东南部平原造林区,应重点加强研究区中北部的生态建设与修复。生态网络的构建与优化对于该区域生态系统修复、生物多样性保护具有重要意义,也可为其他快速城市化地区生态建设与优化修复、生态空间可持续发展提供参考借鉴。  相似文献   

7.
范春苗  王志泰  汤娜  邓国平 《生态学报》2022,42(16):6620-6632
喀斯特多山地区,城市扩展过程中大量自然山体镶嵌入城,形成具有多种生态系统服务功能的城市遗存自然山体。但在城市内部致密化发展过程中,这些城市遗存山体常被城市建设用地孤立和包围,形成人工干扰场中的生态孤岛。生态网络的构建既有利于城市遗存自然山体自然资源保护,又有助于丰富城市绿色基础设施生态系统服务功能。以喀斯特地区典型的多山城市——贵阳市行政区为研究对象,综合利用形态学空间格局分析法和景观连通性识别中心城区生态源地,基于主成分分析确定研究区综合阻力面,通过最小累积阻力模型、重力模型和水文分析等方法,识别并优化关键衔接廊道及节点,在中心城区行政区和建成区两个尺度构建研究区生态网络。结果表明:(1)行政区生态源地分布整体呈现"南北相望"的格局,建成区生态源地集中在中部;(2)研究区综合生态阻力高值主要集中在研究区中部,呈放射状向外扩散,综合生态阻力低值主要分布在研究区周边,以大型林地斑块为主;(3)行政区极重要、重要、一般廊道数分别为15、21、69,极重要廊道集中分布在北部,建成区极重要、重要、一般廊道数分别为37、113、227条,极重要廊道主要分布在建成区中部;(4)行政区和建成区一类生态节点分别为29、25个,二类生态节点33、17个。最终通过叠加行政区和建成区生态网络要素,形成贵阳市中心城区生态网络,研究结果能为贵阳市中心城区在未来用地空间上协调生态保护与城市发展提供科学合理的参考。  相似文献   

8.
魏家星  倪雨淳  寿田园  张昱镇 《生态学报》2023,43(13):5305-5319
快速城市化和国土空间规划大背景下,评估区域生态系统服务、构建生态安全格局是实现城市精细化发展的有效手段。本研究立足生态系统服务供给效能,以长三角生态绿色一体化发展示范区为例,从陆域、水域两个层面进行量化计算,构建水-陆耦合生态系统服务综合评价体系,将高供给区域识别为生态源地,并基于MCR模型和电路理论分别提取廊道和节点,构建区域生态安全格局。研究结果表明:1)分别识别陆域和水域生境斑块面积34.31km2、272.50km2,为江南水乡空间存续和城市绿地空间选址提供了理论依据;2)水-陆耦合度评价得到源地41个,总面积206.79km2,占研究区总面积8.57%,呈现"西北多东南少"的格局;3)提取89条生态廊道和91个生态节点,生态廊道总长度586.35km,呈均匀网状分布,节点包括44个夹点及47个障碍点,主要位于吴江区。通过区域生态安全格局的构建与优先级评价,分级提出国土空间生态保护与修复建议,为我国其他快速城市化地区及都市圈周边区域的国土空间合理布局、土地利用的转化与管理提供参考。  相似文献   

9.
生态控制区是防止城市建设无序蔓延,保障城市生态安全的重要生态空间。对城市生态控制区进行分级管控能够充分发挥其在维护城市生态安全,促进城市建设与生态保护协同发展等方面的作用。研究基于多源数据融合手段,采用"生态系统服务重要性-生态敏感性-景观连通性"评价结果识别生态源地,采用最小累积阻力模型(Minimum Cumulative Resistance,MCR)判定生态廊道和生态节点,形成了点-线-面交汇的生态安全格局网络,并将其应用于厦门市生态控制区分级划定。研究结果表明,厦门市生态源地共有17处,面积为604.19 km2,约占厦门市陆域面积的35.54%,包括陆域生态保护红线、水源保护地、森林公园等区域;提取主要生态廊道15条,长度为152.84 km,主要为连接生态源地与海洋的山海生态廊道;设置生态节点22个,主要为生态源地范围外的小面积重要保护区域和具有明确生态保护目标的区域。依据生态安全格局将厦门市生态控制区划分为三级管控区域,其中,生态源地、生态廊道以及生态节点划入一级管控区,面积占比为69.48%;一级管控区外的生态重要区和林地划入二级管控区,面积占比为10.15%;生态控制区内的其他区域划入三级管控区,面积占比为20.37%。在此基础上提出了分级管控建议,以期为厦门市实现生态控制区高水平保护与城市高质量发展提供重要参考和借鉴。  相似文献   

10.
付凤杰  刘珍环  刘海 《生态学报》2021,41(9):3406-3414
国土空间生态修复是落实生态文明建设战略的重要举措。科学识别国土空间生态修复关键区域,合理布局全域生态修复空间是当前国土空间规划面临的难点之一。以广西壮族自治区贺州市为例,从生态保护重要性、景观连通性、生态功能重要区域和自然保护区四个方面识别生态源地,运用电路理论提取生态廊道,构建生态安全格局。通过电流密度诊断生态廊道中的生态"夹点"和生态障碍点,判定生态廊道宽度,识别国土空间生态保护修复关键区域,制定生态修复的空间布局策略。研究结果表明:(1)市域生态源地面积3656.89 km2,呈"东西重,中部轻"的空间分布特征;生态廊道总长度639.50 km,以中部分布为主,关键生态廊道133.96 km。(2)市域生态"夹点"共16处,面积124.24 km2,主要分布在钟山县,亟待保护修复的生态"夹点"8处,面积45.02 km2,零散分布于市域;生态障碍点共32处,面积426.56 km2,主要分布在市域东部和南部,需优先保护修复的生态障碍点6处,面积166.05 km2,集中在平桂区。通过综合分析国土生态修复关键区域土地利用现状和空间分布特征,制定了分级分类的生态修复措施,以期进一步优化生态安全格局,为国土空间生态修复区域识别和国土空间生态修复规划编制提供参考。  相似文献   

11.
石龙宇  郑巧雅  廖振珍 《生态学报》2022,42(12):4968-4977
雄安新区的建设目标是构建“绿色生态宜居新城区”,将城市发展与生态宜居并行。生态基础设施作为城市中提供生态系统服务的条件与过程,对构建绿色生态宜居新城区起到主要支撑作用。构建了生态基础设施建设与城市发展的指标体系。在现状分析的基础上,根据雄安新区规划文件,采用地区类比法等方法对生态基础设施建设与城市发展情况进行预测,以形态学空间格局分析(MSPA)模型处理得到的7类景观类型作为生态基础设施指标,并从人口、经济、产业、城镇化4方面构建雄安新区城市发展指标;其次建立耦合协同模型,分析2010、2015、2017、2025、2035、2050年6个年度雄安新区生态基础设施建设与城市发展的协同度水平。研究结果表明,雄安新区生态基础设施建设与城市发展在早期处于濒临失调状态,后续经过政策引导,雄安新区生态基础设施建设与城市发展协同程度逐渐提高,至2050年已达到良好协同状态。研究结果可为促进雄安新区生态基础设施建设与城市协同发展提供科学参考。  相似文献   

12.
林梦婧  石龙宇  陈丁楷  和思楠 《生态学报》2023,43(18):7566-7584
构建区域生态风险评价框架有助于清晰地识别、评估、模拟、预测与管理区域生态风险,进而为区域生态安全网络构建和生态安全格局保障提供支撑。雄安新区的建设,使该区域面临巨大的土地利用变化,对区域生态系统的结构和功能产生不可忽视的影响,洪涝和干旱灾害对雄安新区及其周边区域生态系统具有显著的威胁。以雄安新区为例,构建包含暴露-响应关系、人为源和自然源相结合的区域综合生态风险评价框架,分别对城市化和气候变化背景下的雄安新区土地利用变化、洪涝灾害、干旱灾害三类胁迫引起的区域生态风险进行了评价和预测,确定其生态风险空间分布特征及变化趋势。结果表明:(1)从时间序列上来看,由于气候变化导致洪涝、干旱等自然灾害的影响,加上雄安新区的土地利用变化,雄安新区的生态风险在2025年后有所上升,但有序的规划和良好的地类配置使得雄安新区起步区在2025年后生态风险程度下降;(2)从空间上看,雄安新区风险高值区主要集中在白洋淀区以西和以南,以及新区东北部部分区域。最后,从土地利用管理、洪涝和干旱灾害预防等角度提出了生态风险防控对策:(1)雄安新区应坚持对土地利用的合理规划和严格管理,切实防止土地的无序利用,密切关注景观...  相似文献   

13.
雄安新区自2017年设立为国家级新区以来,已进行了大量的开发建设,但迄今尚未见对开发建设所产生的生态效应的研究报道。因此,选取2017年和2020年的Landsat 8影像,分别代表雄安新区未开始建设和建设3年后的两个时期来对此进行对比。利用遥感空间信息技术反演出2017—2020年雄安新区开发建设以来主要地表覆盖类型的变化,并采用遥感生态指数(RSEI)对这些地表覆盖类型变化产生的生态效应进行评估。结果表明:(1)雄安新区2017—2020年间的开发建设已使建筑用地面积增加了60.01 km2,水体面积增加了8.95 km2,植被面积减少了69.29 km2。雄安新区现阶段的开发建设主要集中在区内的容城县和雄县,而安新县的开发强度较小。(2)雄安新区2017—2020年间开发建设的生态效应体现在生态改善面积大于退化面积,生态等级良好以上的面积占比有所提升。因此,新区的生态质量总体略有上升,RSEI均值从0.668上升到0.677。但3个县的表现不一,雄县和安新县的生态有所提升,而容城县则略有下降。(3)雄安新区虽经开发...  相似文献   

14.
稳定、高效的生态安全格局对于"建设雄安新区"国家战略具有重大意义。然而,目前尚缺乏一套科学、弹性的规划方法,用于指导新区建设。采用层次分析(AHP)和有序加权平均(OWA)空间多准则评估方法,结合Google Earth Engine遥感云计算技术和InVEST模型,在量化生态系统服务和生态风险的基础上,模拟新区生态安全格局。首先,生态安全格局涉及众多专业领域,内涵较为丰富,决策过程应采用参与式方法,建立包含生态环境和社会经济因素在内的综合指标体系,奠定格局构建的决策基础;其次,AHP-OWA方法按不同决策情景(风险),提供了一整套"完全保护—中立—完全开发"的空间决策集,定量揭示"保护—开发"权衡关系,为格局构建提供充足决策支持;最后,白洋淀保护地以及启动和起步区建设,会对生态安全格局产生重要影响,所以构建工作应在科学规划启动和起步区建设的同时,围绕白洋淀开展。未来在"绿色生态宜居新城区"目标指引下,新区建设方案应以"保护优先"为基本原则,结合重要区域、现有规划和资金预算等要素共同确定,实现保护与开发的"双赢"。  相似文献   

15.
廖振珍  杨萌  尚晓琪  石龙宇 《生态学报》2021,41(17):7037-7048
高速的城市化进程带来一系列生态破坏和环境污染等可持续发展挑战,需要在城市规划阶段尽量规避这些风险。生态基础设施建设倡导生态系统修复和环境协同治理的理念,是新兴城市化背景下指导城市规划的一种有效手段。目前,国内外生态基础设施建设在宏观尺度研究比较系统,而在小尺度的研究相对欠缺。我国社区等小尺度生态基础设施建设,由于规模较小,缺乏网络化构建,导致了建设后雨水内涝、面源污染问题仍层出不穷。构建了一种城市小尺度生态基础设施的设计方法和技术流程,以雄安新区启动区为研究区开展生态基础设施设计:(1)基于实际调研与理论研究分析场地现状,综合考虑自然要素、物理感知、心理感知、生态过程等相关因素构建"廊道为骨,斑块为节"的生态基础设施体系;(2)辨识区域主要动物活动、迁徙以及保护植物多样性等功能生态斑块,构建串联全城提供多种功能的系统性廊道、增加城市内部生态系统服务的结构性廊道、将生态系统服务渗入城市肌理的局部功能性廊道;(3)从景感满意度和年径流总量控制率2个方面进行生态基础设施建设预期效果评估。研究结果有助于缓解雄安新区建设所面临生态环境问题,保障人居生活环境品质,并为今后城市建设工作提供参考。  相似文献   

16.
雄安新区生态系统服务需求空间分布格局预测   总被引:5,自引:5,他引:0  
冯运双  石龙宇 《生态学报》2020,40(20):7187-7196
设立雄安新区是千年大计、国家大事。明晰生态系统服务需求的空间分布及时间变化趋势,有助于探究雄安新区生态系统服务对社会经济发展的促进和制约作用,支持生态系统服务管理和政策的执行。在已有对单一时间维度的生态系统服务研究基础上,增加了对时空变异性的关注,对雄安新区未来时间节点生态系统服务需求的时空分布特征进行预测,首先选取土地利用开发程度、人口密度、经济密度3个指标建立了生态系统服务需求预测模型,然后根据综合增长率法和地区类比法预测土地利用格局、人口密度和经济密度,最后叠加分析得到雄安新区2035年和2050年生态系统服务需求空间分布格局。预测结果表明,2035年起步区人口密度和经济密度将大幅增加,进而带动生态系统服务需求的增加;本世纪中叶,新区人口密度和经济密度的绝对值将大幅度提高,生态系统服务需求高值区主要集中在"一主、五辅"城区范围,与城乡空间布局相呼应。基于研究结果,提出优化土地利用结构、加强白洋淀保护与修复和建设宏观-中观-微观多尺度生态基础设施几条建议,以期为未来的生态系统服务供给、生态基础设施建设和城市规划布局等提供指导。  相似文献   

17.
雄安新区河流健康评价   总被引:7,自引:0,他引:7  
鲍艳磊  田冰  张瑜  渠开跃  李炜  钱金平 《生态学报》2021,41(15):5988-5997
雄安新区地理环境敏感,生态环境较为脆弱,研究新区河流健康对维护区域水生态平衡,实施京津冀协同发展战略及疏解北京非首都功能具有重要意义。以雄安新区4条河流为研究对象,基于高分二号遥感影像、地理信息数据和实测数据,构建由水文水资源、河流水质、河流底泥、河流生物、河流生境和社会服务构成的河流健康评价指标体系,并用主客观赋值法得到各指标的综合权重,进而计算河流的综合健康指数,以此对河流健康情况进行评价。结果表明不同河流的准则层指标的健康指数和河流综合健康指数存在差异性,其中白沟引河综合健康指数为0.640,处于健康状态;府河的综合健康指数为0.484,处于亚健康状态;瀑河和孝义河均处于病态,综合健康指数为0.269和0.228。总体表现同一河流不同河段以及不同河流存在明显的空间异质性,府河和白沟引河的健康状态明显好于孝义河和瀑河,同时除孝义河不同采样点的健康情况没有差别,府河、瀑河和白沟引河三条河流不同采样点之间的健康状况存在一定的差别,河流入淀处健康状况普遍比中游健康状况好。这为后期生态需水及其整个新区的生态功能提升提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号