首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
草鱼是我国淡水养殖最重要的鱼类之一,其养殖过程易受细菌性或病毒性病原的侵袭,嗜水气单胞菌Aeromonas hydrophila是引发其暴发性败血症的主要细菌性病原之一,对草鱼养殖造成严重的威胁。因此研制疫苗以实现免疫预防极为重要。传统的嗜水气单胞菌疫苗有灭活全菌疫苗、弱毒疫苗等,但其成分复杂、  相似文献   

2.
[背景]嗜水气单胞菌(Aeromonas hydrophila)对水产动物、畜禽和人类均有致病性。基因表达的溶血素、气溶素和肠毒素是重要毒力因子,在致病性嗜水气单胞菌早期检测及防治中尤为重要。目前采用菌落直接提取DNA用于多重PCR研究的相关报道较少。[目的]基于菌落PCR方法建立针对嗜水气单胞菌溶血性基因、肠毒素基因和16S rRNA基因特异性片段(5个基因片段)的多重PCR快速检测方法。[方法]采用选择性RS (Rimler-Shotts)培养基对样品中嗜水气单胞菌有效富集分离和辨认,建立并优化嗜水气单胞菌16S rRNA、ast、alt、aerA、act这5个基因的多重PCR方法,比较菌落PCR中DNA模板不同提取方法对多重PCR扩增结果的影响,并检测该方法对维氏气单胞菌、温和气单胞菌、杀鲑气单胞菌的特异性。[结果]通过对RS培养基上单菌落的16S rRNA基因鉴定,初步判定嗜水气单胞菌和其他可培养菌的菌落形态,对其富集程度进行可视化辨别。多重PCR反应体系优化结果显示,引物浓度最优配比为16S rRNA:ast:alt:aerA:act=1:2:2:3:4。菌落PCR结果显示,...  相似文献   

3.
[目的] 探讨中药单体黄芩苷对嗜水气单胞菌在体内外生长及生物膜形成的影响。[方法] 体外实验中,利用牛津杯法检测抑菌圈直径,结晶紫法检测生物膜的形成,通过泳动实验检测黄芩苷对嗜水气单胞菌运动性的影响,紫外吸收法检测细胞膜完整性,用透射电镜技术观察黄芩苷对细菌形态的影响。体内实验利用草鱼为对象检测黄芩苷对嗜水气单胞菌增殖的影响。[结果] 黄芩苷在体外对嗜水气单胞菌有明显的抑菌效果,通过对生物膜的研究发现黄芩苷对生物膜形成具有抑制作用,并同时抑制其运动性。同时黄芩苷可以破坏细胞结构,并增加了细胞膜通透性。体内实验结果显示黄芩苷对嗜水气单胞菌具有清除作用,且具有一定的浓度依赖性。[结论] 黄芩苷在体内外均具有抑制嗜水气单胞菌增殖的作用,有望在水产养殖病害防治工作中得到应用。  相似文献   

4.
[目的]研究多粘类芽孢杆菌(Paenibacillus polymyxa) CP7菌株的抗菌蛋白(CP7ACP)对嗜水气单胞菌的抑杀作用机理,为防治嗜水气单胞菌引起的鱼病提供新的潜在天然药物.[方法]采用抑菌试验、钼锑抗比色法和紫外光谱法研究其对嗜水气单胞菌S12菌株生长、磷泄漏和生物大分子的影响,并利用扫描电镜和透射电镜观察了嗜水气单胞菌细胞结构遭受的破坏作用.[结果]CP7ACP对嗜水气单胞菌的抑菌圈直径约8.1 mm,最小抑菌浓度(MIC)与最小杀菌浓度(MBC)分别为原液浓度的1/8和1/4;嗜水气单胞菌受CP7ACP处理后,电镜观察发现其细胞壁、细胞膜、细胞器以及菌体均受到不同程度的破坏,胞内的生物大分子和磷泄漏明显,基因组DNA发生增色效应.[结论]CP7ACP抑制嗜水气单胞菌生长,可用于防治嗜水气单胞菌引起的鱼病.  相似文献   

5.
张林  丁运敏  艾晓辉 《微生物学通报》2010,37(12):1793-1797
通过建立中华鳖浸泡感染模型评价中华鳖嗜水气单胞菌油乳剂灭活疫苗对中华鳖的免疫保护效力。在主动免疫保护试验中,疫苗免疫组中华鳖能产生较高的抗体水平,在使用10×LD50的嗜水气单胞菌T3株进行浸泡攻毒后,保护率为100%(10/10),生理盐水对照组中华鳖的存活率仅为30%(3/10)。在被动免疫保护试验中,疫苗腹腔免疫异育银鲫抗血清能80%(8/10)保护中华鳖抵抗10×LD50的T3株的腹腔接种的攻击,生理盐水对照组中华鳖的存活率为20%(2/10)。研究结果表明嗜水气单胞菌佐剂油乳剂灭活苗具有良好的免疫学原性,可有效预防由嗜水气单胞菌引起的中华鳖红底板和肠道败血症等疾病。  相似文献   

6.
嗜水气单胞菌(Aeromonas hydrophila,AH)是我国养殖鱼类的重要病原,对其侵袭机制和毒力因子的研究有重要的意义。本文对嗜水气单胞菌的生物学特性、致病机制、毒力因子及其防治措施进行了综述。  相似文献   

7.
从患细菌性败血症的西伯利亚鲟(Acipenser baerii)的体内分离到一株致病菌株X1,其对西伯利亚鲟的半数致死浓度(LC50)为5.62×105 cfu/ml,具有较强毒力;经ATB细菌鉴定仪生理生化鉴定和16SrDNA序列分析,菌株X1为嗜水气单胞菌(Aeromonas hydrophila);其系统发育分析表明,菌株X1与嗜水气单胞菌ATCC35654(登录号:X74676.1)的亲缘关系最近,其同源性为99%.用0.30%福尔马林灭活,将菌株X1制成灭活全菌苗,对西伯利亚鲟进行注射免疫.研究结果表明,嗜水气单胞菌X1全菌苗能够明显提高西伯利亚鲟的血清抗体水平及总蛋白、免疫球蛋白、溶菌酶含量,而且在嗜水气单胞菌X1全菌苗中加入弗氏不完全佐剂,有利于进一步增强西伯利亚鲟血清抗体水平及总蛋白、免疫球蛋白、溶菌酶含量.此外,嗜水气单胞菌X1全菌苗对西伯利亚鲟抗嗜水气单胞菌X1人工感染也具有较好的免疫保护作用,其对西伯利亚鲟的免疫保护率为50%,而且在嗜水气单胞菌X1全菌苗中加入弗氏不完全佐剂,嗜水气单胞菌X1全菌苗对西伯利亚鲟抗嗜水气单胞菌X1人工感染的免疫保护作用更好,其对西伯利亚鲟的免疫保护率为70%.因此,将嗜水气单胞菌X1全菌苗用于西伯利亚鲟细菌性败血症的防治具有广阔的发展前景.  相似文献   

8.
为了研究不同浓度和厚朴酚对嗜水气单胞菌(Aeromonas hydrophila)致病力的影响, 筛选抗嗜水气单胞菌感染的天然化合物, 通过溶血试验、免疫印记试验、荧光定量PCR试验和动物试验进行了研究。结果发现, 和厚朴酚能在亚抑菌浓度下降低嗜水气单胞菌培养物上清中的溶血活性; 蛋白免疫印迹试验发现和厚朴酚能降低嗜水气单胞菌气溶素的分泌; 荧光定量PCR试验进一步表明和厚朴酚与嗜水气单胞菌共培养后降低了气溶素编码基因aerA的转录而降低气溶素的分泌。此外, 通过动物试验发现和厚朴酚治疗能显著提高斑点叉尾鮰( Ictalurus punctatus )嗜水气单胞菌感染模型的存活率。以上研究表明, 和厚朴酚能通过降低气溶素编码基因aerA的转录而降低嗜水气单胞菌的致病力, 和厚朴酚是一种潜在的新型抗嗜水气单胞菌感染的先导化合物。  相似文献   

9.
采用间接免疫荧光技术分析了西伯利亚鲟细菌性败血症致病菌嗜水气单胞菌(Aeromonas hydrophlia)X1菌株、豚鼠气单胞菌(Aeromonas caviae)XL2-T菌株、致病性温和气单胞菌(Aeromonas sobria)W1菌株与无致病性嗜水气单胞菌(Aeromonas hydrophlia)M3菌株等水产养殖主要病原菌与抗血清之间的免疫交叉反应。结果显示具有致病性的同属菌株X1菌株、XL2-T菌株、W1菌株交叉反应程度较大,说明这3株菌表面存在较多相同抗原决定簇。而无致病性菌株M3与其他3株致病性菌株免疫交叉反应程度较小。  相似文献   

10.
[目的] NtrC是一种与DNA结合的转录调控因子,在激活氮同化基因的转录和维持氮源供应中具有重要作用,本研究拟探究其对嗜水气单胞菌生理功能的影响及其作用机理。[方法] 本研究采用同源重组方法构建了嗜水气单胞菌ATCC 7966 ntrC的缺失株,并以野生株为对照,对缺失株的生理表型进行测定和分析,利用定量蛋白质组学技术比较野生株和ntrC缺失株的蛋白表达差异。[结果] 发现敲除ntrC基因后,嗜水气单胞菌在缺氮、渗透压、重金属离子、氧化以及不同抗生素胁迫下的耐受性都发生显著变化,且这些表型在其补救菌株中均能得到恢复。定量蛋白质组学分析发现,野生株和ntrC缺失株的差异表达蛋白可能参与氨基酸生物合成、抗坏血酸和醛糖酸盐等代谢通路的调控。[结论] 本研究阐明了ntrC在嗜水气单胞菌中的重要作用及其对细菌生物学功能的影响,探讨了ntrC直接或间接调控的蛋白与生理表型之间的联系,研究结果可为未来水产致病菌的防治提供理论支持。  相似文献   

11.
The authors investigated the intracellular signal transduction for interleukin (IL)-1 beta-induced endothelin (ET) production by endothelial cells from cultured human umbilical vein (HUVEC). Cultured HUVEC released immunoreactive (iR)-ET into the media in a time-dependent manner and a significant increase of iR-ET production was observed by the addition of IL-1 beta. The stimulating effect of IL-1 beta on iR-ET production was respectively inhibited by protein kinase C (C kinase) inhibitor (H-7), Ca-calmodulin inhibitor (W-7), cyclic AMP-dependent protein kinase (A kinase) inhibitor (H-8) and tyrosine kinase inhibitor (genistain) in a dose-dependent fashion. The data suggested that intracellular signal transduction for IL-1 beta-induced iR-ET production were via such pathways as C kinase, A kinase, Ca-calmodulin and tyrosine kinase in combination or independently, though possible mediation by other pathways cannot be ruled out.  相似文献   

12.
Bradykinin (BK) and vascular endothelial growth factor (VEGF)-165 stimulate vasodilatation, microvascular permeability, and angiogenesis via the activation of the B2-type and KDR/Flk-1 receptors. To delineate the signal transduction pathways distal to the receptor activation in microvascular permeability, we compared their effects on two downstream targets, i.e. endothelial nitric-oxide (NO) synthase (eNOS) and F-actin, in primary cultures of cardiac capillary endothelial cells. The two mediators induced a similar cytoskeletal reorganization and both the translocation and activation of eNOS, leading to NO release within the first minutes of cell exposure. At the same time, BK produced the tyrosine phosphorylation and internalization of KDR/Flk-1 as did VEGF itself. This transactivation was blocked by the selective inhibitor of VEGF receptor tyrosine kinase activity but not by inhibitors of epidermal growth factor receptor or protein kinase C activity. The selective inhibitor of VEGF receptor tyrosine kinase activity totally prevented the effects of VEGF but only partially inhibited NO release induced by BK without affecting the concomitant cytoskeletal reorganization. Thus, BK transactivated KDR/Flk-1 through an intrinsic kinase activity of KDR/Flk-1, resulting in a further eNOS activation in endothelial cells. This represents a novel mechanism whereby a G protein-coupled receptor activates a receptor tyrosine kinase to generate biological response.  相似文献   

13.
We have provided evidence that exposure of human cells to protein kinase inhibitors results in decreased invasion of these cells by Bartonella bacilliformis in a dose-dependent manner. Preincubation of human laryngeal epithelial cells in the presence of genistein, a tyrosine protein kinase inhibitor, decreased the invasion of these cells by B. bacilliformis significantly. Further, exposure of normal human umbilical vein endothelial cells to staurosporine, a potent inhibitor of protein kinase C and some tyrosine protein kinases, resulted in a considerable reduction in the number of organisms internalized by these cells. Moreover, Bartonella infection of HEp-2 cells induced tyrosine phosphorylation of several Triton X-100 soluble proteins with approximate molecular masses of 243, 215 179, 172 (doublet), 160, 145 and 110 kDa that were absent or reduced in the presence of genistein in cells after 1 h of infection. Exposure of HEp-2 cell monolayers to anti-alpha 5 and anti-beta 1 chain integrin monoclonal antibodies resulted in a moderate decrease in the invasion of these cells, suggesting a possible role of alpha 5 beta 1 integrins in the uptake of Bartonella into nucleated cells.  相似文献   

14.
The effect of protein kinase inhibitors on transferrin receptor (TR) internalization was examined in HeLa, A431, 3T3-L1 cells, and primary chicken embryo fibroblasts. We show that TR endocytosis is not affected by tyrosine kinase or protein kinase C inhibitors, but is inhibited by one serine/threonine kinase inhibitor, H-89. Inhibition occurred within 15 min, was completely reversible after H-89 withdrawal, and was specific for endocytosis rather than pinocytosis since a TR mutant lacking an internalization signal was not affected. Interestingly, H-89 also inhibited the internalization of a TR chimera containing the major histocompatibility complex class II invariant chain cytoplasmic tail, indicating that the effect was not specific for the TR. Since H-89 inhibits a number of kinases, we employed a permeabilized cell endocytosis assay to further characterize the kinase. In permeabilized 3T3-L1 cells, addition of pseudosubstrate inhibitor peptides of casein kinase II (CKII) blocked TR internalization by more than 50%, whereas pseudosubstrates of cyclic AMP-dependent kinase A, protein kinase C, and casein kinase I had no effect. Furthermore, addition of purified CKII to the cell-free reactions containing CKII pseudosubstrates reversed the endocytosis block, suggesting that CKII or a CKII-like activity is required for constitutive endocytosis.  相似文献   

15.
Although the nongenomic effects of glucocorticoids have been well acknowledged, its precise intracellular signal transduction pathway remains to be elucidated. The present study using Western immunoblot and protein kinase activity assay, for the first time, showed that corticosterone (B) can induce a rapid activation of Erk1/2 mitogen-activated protein kinase (MAPK) in PC12 cells. The dose-response curve was bell shaped, with the maximal activation at 10(-9) M in 15 min. The results from immunofluorescence staining also revealed that the activated Erk1/2 MAPK was translocated from cytoplasm to nucleus of PC12 cells in 15 min. Activation of Erk1/2 MAPK by B was apparently not mediated by the classical cytosolic steroid receptors, for B-BSA can induce the phosphorylation of Erk1/2 MAPK, but the antagonist (RU38486) cannot block the phosphorylation of Erk1/2 MAPK induced by B. Phosphorylation of Erk1/2 MAPK induced by B was not affected by a tyrosine kinase inhibitor (genistein), suggesting that the pathway did not involve the tyrosine kinase activity. On the other hand, protein kinase C activator (PMA) can activate and protein kinase C inhibitor (G?6976) can block the activation of Erk1/2 MAPK induced by B. Taken together, these data clearly demonstrated that B might act via putative membrane receptor and rapidly activate Erk1/2 MAPK through protein kinase C alpha in PC12 cells.  相似文献   

16.
17.
We reported previously that stimulation of RBL-2H3 cells through the high-affinity IgE receptor resulted in tyrosine phosphorylation of a 72-kDa protein (pp72) that was coupled to signal transduction. In the present study, although pp72 tyrosine phosphorylation was induced only by antigen triggering, stimulation of RBL-2H3 cells by either antigen or the calcium-ionophore A23187 led to increased tyrosine phosphorylation of a 110-kDa protein (pp110). This tyrosine phosphorylated protein was also observed when RBL-2H3 cells were transfected with the G protein-coupled m3 muscarinic receptor and then stimulated to secrete with carbachol. In contrast to tyrosine phosphorylation of pp72, antigen-induced pp110 tyrosine phosphorylation required extracellular calcium, was absent in cells depleted of protein kinase C, and was detected between 1 and 5 min after stimulation. The protein-tyrosine kinase inhibitor genistein blocked both histamine release and tyrosine phosphorylation induced by A23187. Altogether, the data suggest a role for pp110 in secretion. However, protein kinase C activation induced pp110 tyrosine phosphorylation but not histamine release demonstrating that pp110 tyrosine phosphorylation alone is not sufficient for degranulation. We conclude that tyrosine phosphorylation of pp72 is associated with the early steps of IgE receptor-generated signaling, whereas pp110 tyrosine phosphorylation occurs secondary to calcium influx and protein kinase C activation.  相似文献   

18.
19.
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.  相似文献   

20.
To evaluate the role of protein phosphorylation reactions in signal transduction of human hepatocyte growth factor (hHGF), now known to be the same protein as the scatter factor and tumor cytotoxic factor, we examined the effects of various inhibitors of protein kinases on the mitogenic activity of hHGF on rat hepatocytes in primary culture. Genistein, a specific inhibitor of tyrosine kinase, dose-dependently inhibited the effect of hHGF in stimulating DNA synthesis of hepatocytes. By contrast, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H7), a specific inhibitor of protein kinase C, potentiated the stimulatory effect of hHGF on DNA synthesis of hepatocytes. H7 was effective at over 2 micrograms/ml and potentiated the effect of hHGF over 2-fold at 20 micrograms/ml. On the other hand, an inhibitor of Ca++/calmodulin-dependent protein kinase inhibited both the basal and hHGF-stimulated DNA synthesis in the cells, whereas an inhibitor of cyclic nucleotide-dependent protein kinases had little effect on the action of hHGF. These results suggest that tyrosine phosphorylation is required for stimulation of hepatocyte DNA synthesis by hHGF and that the action of hHGF is negatively regulated by protein kinase C activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号