首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
水稻齿叶矮缩病毒Pns10蛋白由基因组片段S10编码。从RRSV福建沙县分离物(RRSV-F)中获取该病毒的全基因组,根据RRSV泰国分离物核苷酸序列设计特异性引物获得S10编码区,利用Directional TOPO克隆技术,将S10连接至克隆表达载体pET100/D-TOPO构建重组质粒,并进行了序列测定和分析。重组质粒经IPTG诱导在BL21star(DE3)E.coli中高效表达约35 kD Pns10蛋白。将Pns10蛋白免疫新西兰大白兔制备了特异性的抗血清,间接ELISA法测定抗血清效价为1∶7 680,Western blot分析表明抗血清特异性强。表达产物及抗血清在Pns10蛋白的结构和功能研究中具有重要的应用价值,制备的抗血清可用于水稻病株和传播介体的检测以及病毒病的诊断。  相似文献   

2.
吉栩  魏春红  李毅 《中国科学C辑》2009,39(8):761-767
水稻矮缩病毒(RDV)的基因组包含12条双链RNA,其中基因组片段S6编码的非结构蛋白Pns6为该病毒的运动蛋白.在本研究中,在大肠杆菌中表达了N端融合His-tag的重组Pns6蛋白.在低温和低IPTG浓度的诱导后,通过Ni螯合亲和层析进行纯化获得了HisPns6蛋白.稳定性分析表明,HisPns6是一个稳定的蛋白,可耐受37℃下长达24h的处理.纯化的蛋白后续用于单克隆抗体的制备并得到18个杂交瘤细胞株系.使用从感染RDV的水稻叶片中提取的Pns6为样品,以健康水稻总蛋白为对照,通过Western blot法对抗体进行特异性分析,获得了15个阳性抗体.对其进行抗原决定簇分析表明,最敏感的抗原决定簇位于Pns6的C端区域(296~509位氨基酸).该结果与生物信息学预测分析相吻合.  相似文献   

3.
该研究根据已克隆的华南象草(Pennisetum purpureum cv.Huanan)肉桂醇脱氢酶(CAD)基因PpCAD的cDNA序列,构建亚细胞定位载体pAN580-PpCAD,用PEG介导法转化象草原生质体,以探究PpCAD蛋白在细胞内的定位;同时构建植物过表达载体pBA002-PpCAD,通过农杆菌介导法在烟草中异源表达,以研究PpCAD基因与植物木质素合成的关系。结果显示:(1)PpCAD定位在象草原生质体的细胞质内;(2)过表达载体pBA002-PpCAD转化烟草后获得27株转基因烟草,其中25株PCR鉴定为阳性;(3)半定量RT-PCR检测6株转基因烟草后发现,PpCAD基因在不同植株的表达量存在差异,通过Southern杂交检测后发现该差异与目的基因插入的拷贝数有关;(4)6株转基因烟草和野生型烟草表型上没有明显差异,除目的基因多拷贝插入的植株OEC6外,木质素含量有不同程度的提高,最高比野生型提高了56.50%。研究表明,PpCAD是一个细胞质蛋白,在烟草中过表达PpCAD能够提高植株木质素含量,表明PpCAD基因参与了植物的木质素合成,可用于象草的木质素调控研究。  相似文献   

4.
经RT-PCR扩增出水稻矮缩病毒(RDV)中国分离物非结构蛋白基因S6,并克隆至 pGEM-Teasy 载体上.序列分析表明该基因与日本株具有高度同源性,并且含有较高比例的稀有密码子.将S6基因克隆到表达载体pGEX-6P-1,并转化大肠杆菌,该基因在大肠杆菌以包涵体形式大量表达.以表达的融合蛋白作抗原免疫家兔,制备抗S6蛋白的抗血清,ELISA 测定表明,该血清与抗原共价特异性反应,抗血清的效价为13000. Western blot印迹实验表明该抗血清能特异性检测RDV感染的水稻组织中的S6蛋白,因而可作为感染RDV的水稻植株的分子手段.  相似文献   

5.
该研究从玉米高抗自交系D863F中克隆了ZmNPR1基因(GenBank登录号为MH619241)的gDNA和cDNA序列,开放阅读框长1 866 bp,编码621个氨基酸,相对分子质量67.61 kD,等电点为5.46。系统进化树比对表明,玉米ZmNPR1蛋白和高粱SbNPR1蛋白的亲缘关系较近,相似性高达97%。实时荧光定量PCR结果表明,ZmNPR1在叶片中能够被水稻黑条矮缩病毒诱导并显著上调表达。同时ZmNPR1在玉米叶片、茎、根、雄穗、雌穗以及花丝中均有表达,在雌穗和叶片中的表达量较高。研究表明,ZmNPR1可能在玉米粗缩病抗病过程中起着重要作用。  相似文献   

6.
南方水稻黑条矮缩病毒快速检测   总被引:8,自引:1,他引:7  
南方水稻黑条矮缩病毒(southern rice black-streaked dwarf virus,SRBSDV)引起的新水稻矮缩病近年在越南北部和我国南方各省爆发,准确快速地检测病毒是病害预测的关键。本文针对该病毒的S10序列设计了一对新的引物S10F/S10R,利用一步法RT-PCR,对2010年5~8月间湖南省下属各县送来的疑似感染该病毒引起的水稻矮缩病样本进行了检测,结果显示,新引物能有效地区分阳性样品和非阳性样品。同时对PCR产物进行了序列测定,结果表明序列均与已发表的南方水稻黑条矮缩病毒序列(登录号:EU523360和EU784840)达约99%的同源性。还在此基础上构建了系统发育树,发现SRBSDV湖南、广东和海南分离物病毒位于一个相对独立的分支。研究发现相对以往的巢式RT-PCR,本文采用的新引物及一步法RT-PCR能快速检测南方水稻黑条矮缩病毒,简化了操作步骤,缩短了检测时间,适合在SRBSDV检测和病害预测中应用。  相似文献   

7.
水稻瘤矮病毒基因组S9片段的基因结构特征   总被引:6,自引:0,他引:6  
应用RT-PCR技术克隆了水稻瘤矮病毒(RGDV)中国广东信宜分离物(RGDV-C)的基因组S9片段,测定了全序列并进行了生物信息学分析.结果表明,RGDV-C S9片段全长共有1202bp(登录号AY556483),含有一个长的开放阅读框,这一开放阅读框编码一个由323个氨基酸残基组成的多肽,推测分子量约35.6kDa,与泰国分离物(RGDV-T)的全序列相比,它们的核苷酸长度相等,核苷酸同源性为98.1%,氨基酸同源性为98.5%.RGDV S9片段编码的Pns9蛋白在植物呼肠孤病毒属内未发现同源蛋白,其功能尚待确定.利用NCBI的BLAST查找与比较,发现Pns9与伯氏疏螺旋体(Borrelia burgdorferi)ATP依赖的Clp蛋白水解酶组分[ATP-dependent Clp protease proteolytic component(clpP-1)]有21.8%的氨基酸序列同源性.  相似文献   

8.
应用RT-PCR技术克隆了水稻瘤矮病毒(RGDV)中国广东信宜分离物(RGDV-C)的基因组S9片段,测定了全序列并进行了生物信息学分析。结果表明,RGDV-C S9片段全长共有1202bp(登录号AY556483),含有一个长的开放阅读框,这一开放阅读框编码一个由323个氨基酸残基组成的多肽,推测分子量约35.6kDa,与泰国分离物(RGDV-T)的全序列相比,它们的核苷酸长度相等,核苷酸同源性为98.1%,氨基酸同源性为98.5%。RGDV S9片段编码的Pns9蛋白在植物呼肠孤病毒属内未发现同源蛋白,其功能尚待确定。利用NCBI的BLAST查找与比较,发现Pns9与伯氏疏螺旋体(Borrelia burgdorferi)ATP依赖的Clp蛋白水解酶组分[ATP-dependent Clp prote-ase proteolytic component(clpP-1)]有21.8%的氨基酸序列同源性。  相似文献   

9.
解析基因的剪接加工机制是了解植物形态建成、生长发育和逆境胁迫应答的重要环节.与动物相比,植物中相应的研究进展较为缓慢.利用农杆菌介导的烟草瞬时表达系统,分别对单子叶植物水稻BADH2和双子叶植物拟南芥GR7基因片段在烟草叶片中的转录后剪接加工进行分析.结果表明,一些重要剪接调控元件在植物中保守存在,而烟草瞬时表达系统可以作为研究高等植物剪接调控的重要工具,快捷灵敏地检测基因的剪接加工方式.  相似文献   

10.
经RT-PCR扩增出水稻矮缩病毒(RDV)中国分离物非结构蛋白基因S6,并克隆至pGEM-Teasy载体上,序列分析表明该基因与日本株具有高度同源性,并且含有较高比例的稀有密码子。将S6基因克隆到表达载体pGEX-6P-1,并转化大肠杆菌,该基因在大肠杆菌以包涵体形式大量表达,以表达的融合蛋白作抗原免疫家兔,制备抗S6蛋白的抗血清,ELISA测定表明,该血清与抗原共价特异性反应,抗血清的效价为1:3000.Western blot印迹实验表明该抗血清能特异性检测RDV感染的水稻组织中的S6蛋白,因而可作为感染RDV的水稻植株的分子手段。  相似文献   

11.
Rice dwarf virus (RDV) is a member of the genus Phytoreovirus, which is composed of viruses with segmented double-stranded RNA genomes. Proteins that support the intercellular movement of these viruses in the host have not been identified. Microprojectile bombardment was used to determine which open reading frames (ORFs) support intercellular movement of a heterologous virus. A plasmid containing an infectious clone of Potato virus X (PVX) defective in cell-to-cell movement and expressing either beta-glucuronidase or green fluorescent protein (GFP) was used for cobombardment with plasmids containing ORFs from RDV gene segments S1 through S12 onto leaves of Nicotiana benthamiana. Cell-to-cell movement of the movement-defective PVX was restored by cobombardment with a plasmid containing S6. In the absence of S6, no other gene segment supported movement. Identical results were obtained with Nicotiana tabacum, a host that allows fewer viruses to infect and spread within its tissue. S6 supported the cell-to-cell movement of the movement-defective PVX in sink and source leaves of N. benthamiana. A mutant S6 lacking the translation start codon did not complement the cell-to-cell movement of the movement-defective PVX. An S6 protein product (Pns6)-enhanced GFP fusion was observed near or within cell walls of epidermal cells from N. tabacum. By immunocytochemistry, unfused Pns6 was localized to plasmodesmata in rice leaves infected with RDV. S6 thus encodes a protein with characteristics identical to those of other viral proteins required for the cell-to-cell movement of their genome and therefore is likely required for the cell-to-cell movement of RDV.  相似文献   

12.
The genome of rice dwarf phytoreovirus (RDV) is composed of 12 double-stranded RNA segments, of which segment S6 encodes a non-structural protein Pns6 identified as the movement protein. In this report, Pns6 with a 6-histidine tag at the N-terminal was expressed in E. coli after induction under low temperature (18℃) and low concentration (0.4 mmol/L and 0.2 mmol/L) of IPTG, and then purified by Ni-chelated affinity chromatography. Stability analysis indicated that the expressed HisPns6 protein was stable at 37℃ after 24 h treatment. This recombinant protein was then used to make monoclonal antibody. Total 18 hybridoma clones were obtained. The specificity of antibodies was tested by Western blot using native Pns6 extracted from RDV-infected rice leaves, and 15 positive clones were confirmed. Mapping of the antigenic sites of Pns6 using antibodies showed that the most sensitive antigen determinant is located in the C-terminal region (the 296th—509th amino acids) of Pns6, which is confirms bioinformatics analysis.  相似文献   

13.
Ji X  Qian D  Wei C  Ye G  Zhang Z  Wu Z  Xie L  Li Y 《PloS one》2011,6(9):e24986
Cell-to-cell movement is essential for plant viruses to systemically infect host plants. Plant viruses encode movement proteins (MP) to facilitate such movement. Unlike the well-characterized MPs of DNA viruses and single-stranded RNA (ssRNA) viruses, knowledge of the functional mechanisms of MPs encoded by double-stranded RNA (dsRNA) viruses is very limited. In particular, many studied MPs of DNA and ssRNA viruses bind non-specifically ssRNAs, leading to models in which ribonucleoprotein complexes (RNPs) move from cell to cell. Thus, it will be of special interest to determine whether MPs of dsRNA viruses interact with genomic dsRNAs or their derivative sRNAs. To this end, we studied the biochemical functions of MP Pns6 of Rice dwarf phytoreovirus (RDV), a member of Phytoreovirus that contains a 12-segmented dsRNA genome. We report here that Pns6 binds both dsRNAs and ssRNAs. Intriguingly, Pns6 exhibits non-sequence specificity for dsRNA but shows preference for ssRNA sequences derived from the conserved genomic 5'- and 3'-terminal consensus sequences of RDV. Furthermore, Pns6 exhibits magnesium-dependent ATPase activities. Mutagenesis identified the RNA binding and ATPase activity sites of Pns6 at the N- and C-termini, respectively. Our results uncovered the novel property of a viral MP in differentially recognizing dsRNA and ssRNA and establish a biochemical basis to enable further studies on the mechanisms of dsRNA viral MP functions.  相似文献   

14.
Cao X  Zhou P  Zhang X  Zhu S  Zhong X  Xiao Q  Ding B  Li Y 《Journal of virology》2005,79(20):13018-13027
RNA silencing is a mechanism which higher plants and animals have evolved to defend against viral infection in addition to regulation of gene expression for growth and development. As a counterdefense, many plant and some animal viruses studied to date encode RNA silencing suppressors (RSS) that interfere with various steps of the silencing pathway. In this study, we report the first identification of an RSS from a plant double-stranded RNA (dsRNA) virus. Pns10, encoded by S10 of Rice dwarf phytoreovirus (RDV), exhibited RSS activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. The other gene segments of the RDV genome did not have such a function. Pns10 suppressed local and systemic silencing induced by sense RNA but did not interfere with local and systemic silencing induced by dsRNA. Expression of Pns10 also increased the expression of beta-glucuronidase in transient assays and enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, our results establish Pns10 as an RSS encoded by a plant dsRNA virus and further suggest that Pns10 targets an upstream step of dsRNA formation in the RNA silencing pathway.  相似文献   

15.
Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi) induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.  相似文献   

16.
Gao  Feng  Zhao  Shanshan  Men  Shuzhen  Kang  Zhensheng  Hong  Jian  Wei  Chunhong  Hong  Wei  Li  Yi 《中国科学:生命科学英文版》2020,63(11):1703-1713

RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.

  相似文献   

17.
18.
Rice dwarf virus (RDV), with 12 double-stranded RNA (dsRNA) genome segments (S1 to S12), replicates in and is transmitted by vector insects. The RDV-plant host-vector insect system allows us to examine the evolution, adaptation, and population genetics of a plant virus. We compared the effects of long-term maintenance of RDV on population structures in its two hosts. The maintenance of RDV in rice plants for several years resulted in gradual accumulation of nonsense mutations in S2 and S10, absence of expression of the encoded proteins, and complete loss of transmissibility. RDV maintained in cultured insect cells for 6 years retained an intact protein-encoding genome. Thus, the structural P2 protein encoded by S2 and the nonstructural Pns10 protein encoded by S10 of RDV are subject to different selective pressures in the two hosts, and mutations accumulating in the host plant are detrimental in vector insects. However, one round of propagation in insect cells or individuals purged the populations of RDV that had accumulated deleterious mutations in host plants, with exclusive survival of fully competent RDV. Our results suggest that during the course of evolution, an ancestral form of RDV, of insect virus origin, might have acquired the ability to replicate in a host plant, given its reproducible mutations in the host plant that abolish vector transmissibility and viability in nature.  相似文献   

19.
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.  相似文献   

20.

Background

Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet.

Methods

RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays.

Results

In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector.

Conclusions

Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号