首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
干细胞移植能促使受损心肌再生和改善心功能,是治疗心血管疾病的理想选择。现在有多种干细胞用于研究,用于治疗心血管疾病的干细胞包括胚胎干细胞,诱导多能干细胞、骨髓间充质干细胞和心脏干细胞。不同类型的干细胞都有各自的优点和局限性。胚胎干细胞由于伦理问题应用受到限制。诱导多能干细胞具有胚胎样细胞的特性,增殖能力很强,但是有形成肿瘤的风险。间充质干细胞由于具有免疫调节特性可作为万能供体细胞。心脏干细胞比其它类型的干细胞能更好地表达心肌分化的标记物,改善心脏功能。本文对干细胞在心血管疾病研究及治疗中的最新进展进行综述。  相似文献   

2.
骨髓间充质干细胞因其广泛的临床应用前景而备受关注.非人灵长类动物在基因、生理和代谢等方面与人类相似,在制作疾病模型和疾病治疗研究等方面具有无可比拟的优势.因此,来源于非人灵长类的骨髓间充质干细胞是细胞移植和组织工程研究中的重要工具.本实验对比研究了不同年龄段食蟹猴骨髓间充质干细胞的生物学特征.结果发现,与中年食蟹猴骨髓间充质干细胞比较,青少年食蟹猴骨髓间充质干细胞具有明显高的增殖和分化潜能.长期体外培养的食蟹猴骨髓间充质干细胞能发生自发转变,转变后的细胞具有明显不同于骨髓间充质干细胞的形态特征.端粒酶活性检测显示,各年龄组不同代数的骨髓间充质干细胞端粒酶活性没有明显差别,但与骨髓间充质干细胞比较,转变后的细胞端粒酶活性显著增高.另一方面,随着体外培养时间延长,染色体不稳定性发生频率相应增加.这些结果提示在使用间充质干细胞进行实验或临床研究前,必须全面考虑各种因素,包括供体的年龄等,并且完善各种检测.  相似文献   

3.
目的:观察活体染料羧基荧光素乙酰乙酸(CFSE)标记的人羊膜间充质干细胞对四氯化碳诱导小鼠肝损伤模型的定位修复情况。方法:采用胰蛋白酶-胶原酶消化法从羊膜组织中分离间充质干细胞,通过流式细胞术和免疫荧光等方法进行鉴定。模型组按浓度为20μl/g剂量的四氯化碳和橄榄油混合液诱导小鼠肝损伤,治疗组经小鼠尾静脉注射羧基荧光素乙酰乙酸标记的人羊膜间充质干细胞约1×106个/ml。分别取模型组和细胞移植的治疗组小鼠眼球血和肝组织进行相关检测。结果:分离得到纯度较高的羊膜间充质干细胞;冰冻切片免疫荧光显示移植1周后细胞向小鼠受损肝组织定植,CFSE标记的人羊膜间充质干细胞呈绿色荧光;细胞移植后4周,与模型组比较,细胞移植组小鼠血清中天冬氨酸转移酶、丙氨酸氨基转移酶显著降低,而白蛋白明显升高(P< 0.01);肝组织病理切片模型组小鼠细胞水肿,坏死灶多见,脂肪变性,可见不同程度的炎性细胞浸润;治疗组小鼠肝组织病理学改变和损伤程度有较明显改善;小鼠肝组织冰冻切片的免疫荧光显示移植4周后人羊膜间充质干细胞周围分泌血清白蛋白。结论:羧基荧光素乙酰乙酸标记的人羊膜间充质干细胞可有效改善肝组织的生理功能,为细胞定位移植治疗肝脏疾病的修复情况提供实验数据。  相似文献   

4.
近年来, 在细胞治疗和再生医学领域, 自体或异体细胞移植治疗疾病正在成为现实. 骨髓间充质干细胞具有分化成多种细胞的潜能, 已被广泛用于各种疾病的研究和治疗. 活体追踪移植细胞, 检测移植细胞的生存及功能状态对于评价移植治疗效果至关重要. 目前, 利用磁共振对比剂超顺磁性氧化铁颗粒(SPIO), 活体追踪和监测标记细胞已被广泛用于动物实验研究和一些临床疾病诊断. 但 MRI 信号不能显示移植细胞在体内的生物学特征. 本研究中, 对食蟹猴骨髓间充质干细胞体外标记Molday ION rhodamine-BTM(MIRB), 探讨MIRB 标记后cMSCs 的细胞生物学特性, 以及脑内移植后的活体MRI 影像学及组织学追踪. 结果表明, MIRB 具有生物组织相容性, 能高效标记cMSCs, 可用于体内多模式追踪移植细胞, 为利用MIRB 追踪和检测移植细胞, 以及干细胞移植治疗机制的研究提供资料.  相似文献   

5.
间充质干细胞是一类具有强大增殖、多向分化潜能和免疫调节能力的多功能细胞,研究显示间充质干细胞移植可能治疗多种难治性疾病,例如帕金森病、脊髓损伤以及肿瘤等。但是,人们对移植后的细胞在宿主内的存活、分布、增殖、分化、免疫排斥反应以及成瘤特性等问题尚不清楚,所以许多疾病经过细胞移植治疗后的进展及转归情况仍难以获得确切的科学证据。而细胞成像技术(包括放射性核素成像、超声成像、磁共振成像以及光学成像)可以在体外或者体内实现对间充质干细胞实时、无创的示踪,在以间充质干细胞为研究基础的细胞移植治疗和细胞组织再生的医学领域里有着巨大的应用潜力。该文综述近十年来细胞成像技术应用于示踪间充质干细胞移植疗法的研究进展,旨在比较当下多种热门细胞成像技术的优劣,进而找寻更合适的干细胞示踪策略,为干细胞移植治疗的基础和临床研究提供进一步的理论证据支持和研究思路。  相似文献   

6.
心脏缺血性损伤是危害人类健康的重要原因,过去的干细胞疗法具有重要的功能缺陷,如免疫排斥、致瘤性和输注毒性等问题。大量研究表明,间充质干细胞的主要治疗作用是由旁分泌因子所介导。最新研究发现,间充质干细胞来源的外泌体microRNA从移植的干细胞转移至缺血损伤的心脏细胞,调节细胞的增殖、凋亡、炎症和血管生成。本文对来源于间充质干细胞的外泌体及其内部microRNA在心脏缺血性损伤修复中的分子机制进行综述。  相似文献   

7.
外胚间充质干细胞构建组织工程骨骼肌的应用研究   总被引:1,自引:0,他引:1  
目的:探讨利用大鼠颌突外胚间充质干细胞构建组织工程骨骼肌的可行性,并观察对骨骼肌缺损的修复重建的促进效应。方法:取妊娠E 11.5胎鼠颌突外胚间充质干细胞,纯化后在含5ml/L体积浓度二甲基亚砜的DMEM/F12培养基中诱导分化为骨骼肌样细胞,将细胞种植于BAM膜上培养形成组织工程骨骼肌。将其移植入大鼠骨骼肌缺损模型,手术后14 d观察骨骼肌恢复情况,同期进行组织学及免疫组化染色鉴定。结果:经诱导后外胚间充质干细胞可向骨骼肌样细胞转化,构建的组织工程骨骼肌可加速缺损的修复重建,组织学染色显示外胚间充质干细胞具有正常骨骼肌的组织形态,可表达成肌相关蛋白MyOD。结论:诱导后的外胚间充质干细胞可作为种子细胞构建组织工程骨骼肌,本实验为临床肌肉的缺损修复奠定了理论基础。  相似文献   

8.
间充质干细胞是一类具有多向分化潜能的成体干细胞,在体内外不仅可以被诱导分化为中胚层细胞,而且可以分化为内胚层和神经外胚层细胞。间充质干细胞易分离,体外可大量扩增,异体移植不引起免疫排斥反应,在细胞治疗和组织工程中具有广阔的应用前景。经过适当诱导,间充质干细胞可能成为胰岛β细胞的来源之一。就间充质干细胞的生物学性状和优势,以及诱导分化为胰岛β细胞的技术方法和发展趋势进行了综述。  相似文献   

9.
胚胎干细胞的心脏应用   总被引:2,自引:0,他引:2  
Xiao YF 《生理学报》2003,55(5):493-504
心肌梗死期间死亡的心肌细胞将由没有收缩功能的疤痕组织替代,因而极可能引起心力衰竭。对治疗心衰来说,修复死亡或损伤的心肌以及改善心功能仍面临着极大挑战。干细胞移植已在近年来的实验中用于修复损失的心肌。本文总结了近期在心肌损伤动物中实施胚胎干细胞移植的实验结果,并着重介绍对这类特定细胞的研究进展。胚胎干细胞取源于早期哺乳类胚胎的胚芽细胞,属于多功能干细胞。这类细胞具有长期增殖而不分化的能力,或台色够在培养过程中分化成包括心肌细胞在内的所有特殊体细胞。由于胚胎干细胞具有极大的增殖和分化为成熟组织的能力,它们可能成为一种潜在的很有实用价值的细胞来源,可用于对病态心脏的功能心肌再生的细胞治疗。新近的研究表明,在心肌梗死动物模型中,心肌内移植胚胎干细胞或由其分化成的心肌样细胞,能导致已损伤心肌的再生,并改善心脏功能。另外,在病毒性心肌炎小鼠中,静脉输入胚胎干细胞可明显提高生存率和减轻心肌损伤。有关人类胚胎干细胞在体外分化成心肌细胞以及这些细胞的特性,近来已有报道。然而,要在临床能应用人类胚胎干细胞或由其分化成的心肌细胞来治疗晚期心脏疾病,还必须越过大量的伦理、法律和科学上的障碍。  相似文献   

10.
陈林  刘磊 《生物磁学》2011,(23):4580-4582
再生医学近年来受到越来越多的重视。它开启了治疗由于老化,损伤及一些先天性缺陷所造成的缺损畸形的新途径。其临床应用已涉及到各种组织的修复,包括血液,皮肤,角膜,软骨和骨等。在口腔领域,目前治疗牙缺失主要依靠修复体,种植体和牙移植。然而这些方法都存在一定的缺陷。而通过再生医学的原理和方法实现牙再生治疗可以为机体提供有生命的,有功能的,相容性好的组织结构。种子细胞是牙再生的基础与关键。在牙再生研究中,牙髓间充质干细胞,牙乳头细胞,牙周膜间充质细胞,牙囊细胞及牙源性上皮细胞等牙源性干细胞常通过诱导分化为成釉细胞或成牙本质细胞来作为种子细胞应用,在临床上却难以获取,近来研究也有用骨髓间充质干细胞或脂肪间充质干细胞细胞等非牙源性干细胞者,但其牙向分化能力及分化调控机制还不明确。跻带间充质干细胞在新近的研究中较其它非牙源性干细胞表现出更大的优势,脐带间充质干细胞更原始、具有更高可塑性、更大扩增分化潜能。在此,本文就脐带间充质干细胞向牙细胞系分化的可能性做一论述,并对其可能实现的牙向分化给出可能的方法和策略,为牙再生种子细胞的选取提供新的思路。  相似文献   

11.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

12.
Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF‐MSCs) and bone marrow mesenchymal stromal cells (BM‐MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF‐MSCs are less prone to senescence with respect to BM‐MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF‐MSCs are able to return to the basal condition more efficiently with respect to BM‐MSCs. Indeed, AF‐MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF‐MSCs may represent a valid alternative to BM‐MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF‐MSCs and BM‐MSCs may pave the way to their rational use in the medical field.  相似文献   

13.
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.  相似文献   

14.
Growing cell-based myocardial therapies which could lead to successful myocardial repair attracts medical interest. Even more intriguing is the observation that MSCs appears to be a more potent material among kinds of stem cells for the transplantation, the mechanism for this benefit remains unclear. However, the therapeutic contribution of MSCs to myocardial repair can be caused by multiple factors including: direct differentiation into cardiac tissue including cardiomyocytes, smooth muscle cell, and vascular endothelial cells; secreting a variety of cytokines and growth factors that have paracrine activities; spontaneous cell fusion; and stimulating endogenous repair. In addition, MSCs possess local immunosuppressive properties, and MSCs mobilization is widely used clinically for transplantation. We will discusses the potential mechanisms of MSCs repair for ischemic heart diseases.  相似文献   

15.
Mesenchymal stem cells (MSCs) are multipotent cells that can be differentiated into osteoblasts and provide an excellent cell source for bone regeneration and repair. Recently, the canonical Wnt/beta-catenin signaling pathway has been found to play a critical role in skeletal development and osteogenesis, implying that Wnts can be utilized to improve de novo bone formation mediated by MSCs. However, it is unknown whether noncanonical Wnt signaling regulates osteogenic differentiation. Here, we find that Wnt-4 enhanced in vitro osteogenic differentiation of MSCs isolated from human adult craniofacial tissues and promoted bone formation in vivo. Whereas Wnt-4 did not stabilize beta-catenin, it activated p38 MAPK in a novel noncanonical signaling pathway. The activation of p38 was dependent on Axin and was required for the enhancement of MSC differentiation by Wnt-4. Moreover, using two different models of craniofacial bone injury, we found that MSCs genetically engineered to express Wnt-4 enhanced osteogenesis and improved the repair of craniofacial defects in vivo. Taken together, our results reveal that noncanonical Wnt signaling could also play a role in osteogenic differentiation. Wnt-4 may have a potential use in improving bone regeneration and repair of craniofacial defects.  相似文献   

16.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

17.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.  相似文献   

18.
间充质干细胞特性与应用前景   总被引:3,自引:0,他引:3  
仵敏娟  刘善荣  刘厚奇 《生命科学》2004,16(3):135-137,169
间充质干细胞是中胚层发育的早期细胞,具备干细胞的基本特性。在发育的不同阶段和特定环境条件下,间充质干细胞可向骨、软骨、肌肉、神经、血管及血液细胞等多种方向分化。在成体的很多器官和组织中也存在着间充质干细胞,以备修复和再生所用。间充质干细胞易于体外培养,扩增迅速,可以分化为多种细胞,为干细胞生物工程提供了一个很好的种子细胞。在明确间充质干细胞生物学特性和分化的机制后,可在体外和体内将其定向诱导分化为多种细胞。间充质干细胞具有巨大的临床应用价值和科学研究价值。  相似文献   

19.
Mesenchymal stem cells (MSCs), which can differentiate into multiple mesodermal tissues, may be useful for autologous cell transplantation, if MSCs, which are isolated from bone marrow in small numbers, can be expanded in vitro. We developed a combined methodological approach to enrich and proliferate MSCs in vitro using magnetic nanoparticles. Our magnetite cationic liposomes (MCLs), which have a positive surface charge in order to improve adsorption, accumulated in MSCs at a concentration of 20 pg of magnetite per cell. The MCLs exhibited no toxicity against MSCs in proliferation and differentiation to osteoblasts and adipocytes. The MSCs magnetically labeled by MCLs were enriched using magnets and then cultured, resulting in much higher density (seeding density, 1000 cells/cm2) than in ordinary culture (seeding density, 18 cells/cm2). When MSCs were seeded at high density using MCLs, there was a 5-fold increase in the number of cells, compared to culture prepared without MCLs. Our results suggest that this novel culture method using magnetic nanoparticles can be used to efficiently expand MSCs for clinical application.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号