首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.  相似文献   

2.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

3.
骨髓间质干细胞修复受损心肌研究进展   总被引:3,自引:1,他引:2  
骨髓间充质干细胞是一种多潜能干细胞。在体外培养时,多种诱导因素可使其分化为心肌细胞等。目前进行的动物实验和临床研究表明骨髓间充质干细胞具有促进血管增生以及改善心肌梗死后心脏功能的作用,为受损心肌的治疗提供了广阔前景。但是其修复受损心肌的机制仍具有很大争议。本文就以上内容进行综述。  相似文献   

4.
王宇翔  陶树清  卜建龙 《生物磁学》2014,(6):1177-1179,1190
间充质干细胞(mesenchymal stemcells, MSCs)是具有自我更新、多向分化和强可塑性的细胞,具有分化为血液、骨、软骨、脂肪、肌肉、表皮、上皮、神经等组织的潜能,受到再生医学研究的关注。目前已有研究表明将MSCs 移植到多种损伤组织中都能改善损伤组织的功能。文章在简要回顾了低氧环境对MSCs增殖和分化的研究内容和有关理论争论基础上重点介绍了缺氧诱导因子(HIF)通路对MSCs 增殖和分化的影响。文章阐述了低氧环境对MSCs向成骨,成软骨,成脂及成神经元方向分化的影响。由于人体组织内生理条件下的氧张力远远小于大气中的氧张力(21%),采用低氧培养MSCs 的研究方法得出的结论将更加贴近实际MSCs在人体内的增殖、分化情况。因此研究MSCs 在低氧张力环境中增殖、分化的能力将为MSCs 能成功移植到体内并发挥作用提供保障。  相似文献   

5.
摘要: 间充质干细胞(mesenchymal stem cells, MSCs)是具有自我更新、 多向分化和强可塑性的细胞, 具有分化为血液、 骨、 软骨、 脂 肪、 肌肉、 表皮、 上皮、 神经等组织的潜能, 受到再生医学研究的关注。目前已有研究表明将 MSCs 移植到多种损伤组织中都能改 善损伤组织的功能。文章在简要回顾了低氧环境对 MSCs 增殖和分化的研究内容和有关理论争论基础上重点介绍了缺氧诱导因 子 ( HIF )通路对 MSCs 增殖和分化的影响。文章阐述了低氧环境对 MSCs 向成骨,成软骨,成脂及成神经元方向分化的影响。 由于 人体组织内生理条件下的氧张力远远小于大气中的氧张力 (21% ), 采用低氧培养 MSCs 的研究方法得出的结论将更加贴近实际 MSCs 在人体内的增殖、分化情况。因此研究 MSCs 在低氧张力环境中增殖、分化的能力将为 MSCs 能成功移植到体内并发挥作 用提供保障。  相似文献   

6.
Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.  相似文献   

7.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Mesenchymal stem cells (MSCs) are an important cell population in the bone marrow microenvironment. MSCs have the capacity to differentiate in vitro into several mesenchymal tissues including bone, cartilage, fat, tendon, muscle, and marrow stroma. This study was designed to isolate, expand, and characterize the differentiation ability of sheep bone marrow‐derived MSCs and to demonstrate the possibility to permanently express a reporter gene. Bone marrow was collected from the iliac crest and mononuclear cells were separated by density gradient centrifugation. Sheep MSCs cell lines were stable characterized as CD44+ and CD34? and then transfected with a green fluorescent protein (GFP) reporter gene. The GFP expression was maintained in about half (46.6%) of cloned blastocysts produced by nuclear transfer of GFP+ sheep MSCs, suggesting the possibility to establish multipotent embryonic cells' lines carrying the fluorescent tag for comparative studies on the differentiation capacity of adult stem cells (MSCs) versus embryonic stem cells. We found that sheep MSCs under appropriate culture conditions could be induced to differentiate into adipocytes, chondrocytes, and osteoblast lineages. Our results confirm the plasticity of sheep MSCs and establish the foundation for the development of a pre‐clinical sheep model to test the efficiency and safety of cell replacement therapy. J. Cell. Biochem. 114: 134–143, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Mesenchymal stem cells (MSCs) have been isolated not only from bone marrow, but also from many other tissues such as adipose tissue, skeletal muscle, liver, brain and pancreas. Because MSC were found to have the ability to differentiate into cells of multiple organs and systems such as bone, fat, cartilage, muscle, neurons, hepatocytes and insulin-producing cells, MSCs have generated a great deal of interest for their potential use in regenerative medicine and tissue engineering. Furthermore, given the ease of their isolation and their extensive expansion rate and differentiation potential, mesenchymal stem cells are among the first stem cell types that have a great potential to be introduced in the clinic. Finally, mesenchymal stem cells seem to be not only hypoimmunogenic and thus be suitable for allogeneic transplantation, but they are also able to produce immunosuppression upon transplantation. In this review we summarize the latest research in the use of mesenchymal stem cells in transplantation for generalized diseases, local implantation for local tissue defects, and as a vehicle for genes in gene therapy protocols.  相似文献   

11.
Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density.Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells.  相似文献   

12.
Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when muscle differentiation is induced. Moreover, maintenance of Menin expression by constitutive ectopic expression inhibited muscle cell differentiation. Reduction of Menin expression by siRNA technology results in precocious muscle differentiation and concomitantly attenuates BMP-2 induced osteogenesis. Reduced Menin expression antagonizes BMP-2 and TGF-β1 mediated inhibition of myogenesis. Furthermore, Menin was found to directly interact with and potentiate the transactivation properties of Smad3 in response to TGF-β1. Finally in concert with these observations, tissue-specific inactivation of Men1 in Pax3-expressing somite precursor cells leads to a patterning defect of rib formation and increased muscle mass in the intercostal region. These data invoke a pivotal role for Menin in the competence of mesenchymal cells to respond to TGF-β1 and BMP-2 signals. Thus, by modulating cytokine responsiveness Menin functions to alter the balance of multipotent mesenchymal cell commitment to the osteogenic or myogenic lineages.  相似文献   

13.
Mesenchymal stem cells: clinical applications and biological characterization   总被引:45,自引:0,他引:45  
Mesenchymal stem cells (MSCs) have been isolated from bone marrow, periosteum, trabecular bone, adipose tissue, synovium, skeletal muscle and deciduous teeth. These cells have the capacity to differentiate into cells of connective tissue lineages, including bone, fat, cartilage and muscle. A great deal has been learned in recent years about the isolation and characterization of MSCs, and control of their differentiation. These cells have generated a great deal of interest because of their potential use in regenerative medicine and tissue engineering and there are some dramatic examples, derived from both pre-clinical and clinical studies, that illustrate their therapeutic value. This review summarizes recent findings regarding the potential clinical use of MSCs in cardiovascular, neural and orthopaedic applications. As new methods are developed, there are several aspects to the implanted cell-host interaction that need to be addressed before we can fully understand the underlying mechanisms. These include the host immune response to implanted cells, the homing mechanisms that guide delivered cells to a site of injury and the differentiation in vivo of implanted cells under the influence of local signals.  相似文献   

14.
Mesenchymal stem cells (MSCs) are multipotent cells that have the capability of differentiating into several different cells such as osteoblasts (bone), chondrocytes (cartilage), adipocytes (fat), myocytes (muscle) and tenocytes (tendon). In this review we highlight the different regulators which determine the lineage a particular MSC will differentiate into. Mesenchymal stem cells are increasingly being used in tissue regeneration and repair. Strict regulation of differentiation of MSCs is essential for a positive outcome of the particular tissue treated with MSCs, especially due to the fact that capacity to differentiate decreases with increasing age of the donor.  相似文献   

15.
Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.  相似文献   

16.
Marrow-derived stroma cells (MSCs) can differentiate into multiple lineages including myogenic cells. However, the molecular mechanisms that direct MSCs to each differentiation pathway are poorly understood. Our study was designed to gain insights into the potential regulatory pathways that may assist in defining MSC commitment and differentiation properties. This will delineate the similarities or differences in the expression of genes between several cell types of mesenchymal origin. In this study, we established in vitro models, which allow following the discrete stages of differentiation of cardio- and myogenic-cells compared with MSC. Gene expression of each cell type at several stages of their differentiation path was evaluated by means of Affymetrix Gene Chips. Bioinformatic clustering of genes confirmed that with time in culture the myogenic cells ceased proliferating and commenced with differentiation. The expression profile analysis revealed the similarity and differences between myogenic cells and MSCs. This research compared at the molecular levels snapshots of gene expression patterns and elaborated on the overlap or differences between the analyzed cellular systems. Our results shed light on gene profiles of cells throughout their differentiation pathways. Establishing the gene signature of the differentiation process of cells that belong to several mesenchymal lineages may contribute to the understanding of molecular pathways that underlay mesenchymal tissue remodeling.  相似文献   

17.
Matrix elasticity directs stem cell lineage specification   总被引:61,自引:0,他引:61  
Engler AJ  Sen S  Sweeney HL  Discher DE 《Cell》2006,126(4):677-689
Microenvironments appear important in stem cell lineage specification but can be difficult to adequately characterize or control with soft tissues. Naive mesenchymal stem cells (MSCs) are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. Soft matrices that mimic brain are neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. During the initial week in culture, reprogramming of these lineages is possible with addition of soluble induction factors, but after several weeks in culture, the cells commit to the lineage specified by matrix elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types. Inhibition of nonmuscle myosin II blocks all elasticity-directed lineage specification-without strongly perturbing many other aspects of cell function and shape. The results have significant implications for understanding physical effects of the in vivo microenvironment and also for therapeutic uses of stem cells.  相似文献   

18.
骨髓干细胞的可塑性研究进展   总被引:2,自引:0,他引:2  
成体干细胞在体内特定的微环境或体外人工培养条件下具有极强的可塑性分化潜能,其主要功能是负责组织细胞的生理性更新和病理性修复.骨髓组织中包括产生所有成熟血细胞系的造血干细胞(HSCs)、多潜能成体祖细胞和能分化为骨、软骨、脂肪的间充质干细胞(MSCs),这些细胞时还有向造血和骨髓以外的其他类型的成熟细胞分化如神经、肌肉、皮肤、心、肝、肾、肺等分化的能力.对最近几年国内外关于骨髓干细胞可塑性的实验研究进展作简要综述.  相似文献   

19.
Bone formation in the embryo, and during adult fracture repair and remodeling, involves the progreny of a small number of cells called mesenchymal stem cells (MSCs). These cells continuously replicate themselves, while a portion become committed to mesenchymal cell lineages such as bone, cartilage, tendon, legament and muscle. The differentiation of these cells, within each lineage, is a complex multistep pathway involving discrete cellular trasitions much like that which occurs during hematopoiesys. Progression from one stage to the next depends on the presence of specific bioactive factors, nutrients, and other environmental cues whose exquisitely controlled contributions orchestrate the entire differentiation phgenomenon. As understanding of the cellular and molecular events of osteogenic differentiation of MSCs provides the foundation for the emergence of a new therapeutic technilogy for cell therapy. The isolation and in vitro mitotic expansion of autologous human MSCs will support the development of novel protocols for the treatment of many clinically challenging conditions. For example, local bone defects can be repaired through site-directed delivery of MSCs in an appropriate carrier vehicle. Generalized conditions, such as osteoporosis, may be treatable by systemic administration of culture-expanded autologous MSCs or through biopharmaceutical regimens based on the discovery of critical regulatory molecules in the differentiation process. With this in mind, we can begin to explore therapeutic options that have never before been available.  相似文献   

20.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号