首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
大鼠海马CA1区GABA能神经元在睡眠调节中的作用   总被引:1,自引:0,他引:1  
采用脑立体定位技术确定Sprague-Dawley大鼠(Rattus norregicus)双侧海马CA1区插管位置并进行核团埋管,同时安装脑电和肌电电极,用于记录大鼠皮层脑电活动和肌电活动。运用睡眠描记技术观察海马CA1区微量注射药物后对大鼠睡眠-觉醒周期的影响。发现海马内微量注射0.75μg、1.0μg的γ-氨基丁酸(GABA)后觉醒时间增加,分别为(120.7±13.3)min和(124.6±19.2)min(P0.05),睡眠时间减少,分别为(119.4±13.3)min与(115.4±19.2)min(P0.05),其中,深慢波睡眠时间(SWS2)分别减少53.3%(t=2.451,P0.05)和63.5%(t=3.367,P0.01);而微量注射1.0μgGABAA受体阻断剂荷包牡丹碱(Bic)后,睡眠时间增加(165.5±20.8)min(P0.01),觉醒时间减少(74.5±20.8)min(P0.01),其中,SWS2时间增加79.6%(t=2.600,P0.05),并可对抗GABA的促醒效应;微量注射GABAB受体激动剂氯苯氨基丁酸(Bac)对睡眠-觉醒周期无直接影响,亦不能阻断GABA的促醒效应。结果提示,GABA在海马参与大鼠睡眠-觉醒周期的调节且具有促觉醒作用,GABA对睡眠的影响主要是通过改变深慢波睡眠成分实现的,GABAA受体参与介导了这一过程。  相似文献   

2.
中缝背核5-羟色胺能神经元在睡眠调节中的作用研究   总被引:1,自引:0,他引:1  
目的:研究中缝背核(DRN)5-羟色胺(5-HT)能神经元在睡眠中的调节作用。方法:运用脑立体定位、核团微量注射和多导睡眠描记(PSG),观察DRN 5-HT能神经元对大鼠睡眠的影响。结果:DRN微量注射谷氨酸钠(L-Glu),大鼠睡眠减少,特别是深慢波睡眠(SWS2)明显减少,觉醒(W)增加;DRN微量注射海人酸(KA)和对氯苯丙氨酸(PCPA),大鼠SWS2和异相睡眠(PS)增加,W减少。结论:DRN 5-HT能神经元参与睡眠的调节,兴奋DRN 5-HT能神经元睡眠时间减少,抑制DRN 5-HT能神经元则具有促进睡眠的作用。  相似文献   

3.
基底外侧杏仁核对大鼠睡眠和行为的调节作用及机制研究   总被引:4,自引:1,他引:3  
目的和方法 :本研究运用多导睡眠描记 (PSG)方法、大白鼠开阔实验法及强迫游泳实验观察杏仁核的基底外侧核 (BLN)内微量注射谷氨酸、吗啡和纳络酮对大鼠睡眠、觉醒和行为的影响。结果 :用谷氨酸选择性兴奋BLN内神经元胞体可增加觉醒 ,减少慢波睡眠 (SWS)和总睡眠时间 (TST) ,增加大鼠自主活动和缩短强迫游泳“不动”时间。吗啡作用与谷氨酸相似 ,而阿片受体阻断剂纳络酮引起的作用则与之相反 ,并可完全阻断吗啡的作用。结论 :BLN神经元兴奋可引起觉醒增加、SWS减少和自主活动增加效应 ,阿片受体激动剂是BLN调节睡眠、觉醒和行为的重要递质。  相似文献   

4.
基底外侧杏仁核对睡眠-觉醒的调节作用   总被引:13,自引:0,他引:13  
Zhu GQ  Zhong MK  Zhang JX  Zhao LZ  Ke DP  Wang M  Shi L 《生理学报》1998,50(6):688-692
采用多道睡眠描记方法,观察了基底外侧杏仁核在睡眠-觉醒调节中的作用。结果发现,电损毁双侧BLN引起慢波睡眠和快波睡眠增加,觉醒减少;在双侧BLN内注射选择性损毁神经元胸体剂量的红藻氨酸引起双相效应,注射KA后第1天出现失眠,自第3天开始,SWS增多,W减少,但PS无显著变化。  相似文献   

5.
1.本工作以皮层电图、海马脑电图、眼动电图、肌电图和大体行为作指标,系统地观察了实验室家兔的睡眠-觉醒昼夜节律,分析了动物行为与海马脑电图的相互关系以及绒毛膜促性腺激素对雌兔异相睡眠的影响。2.家兔的睡眠-觉醒周期可分为:(1)活动期(59.4±2.9%);(2)安静清醒期(4.4±0.3%);(3)瞳睡期(4.2±0.1%);(4)浅慢波睡眠期(12.7±1.4%),(5)深慢波睡眠期(13.8±1.7%),(6)异相睡眠期(5.6±0.3%)。每一睡眠周期平均约20分,睡眠主要出现在12:00—15:00和0:00—3:00。3.海马脑电图的变化与睡眠、觉醒及其他行为变化密切相关。主要表现在清醒、随意运动和异相睡眠时出现θ节律,慢波睡眠时为不规则慢波。4.静脉注射绒毛膜促性腺激素可使雌兔异相睡眠时间延长。  相似文献   

6.
NO对大鼠睡眠-觉醒的调节   总被引:10,自引:0,他引:10  
目的和方法:通过对大鼠侧脑室微量注射NOS抑制剂L-NAME及NO的前体L-精氨酸(L-Arg)观察两种物质对大鼠睡眠-觉醒的影响。结果:注射1mg L-NAME(5μL)后4h觉醒(W)明显增加,尤以注射后第1 ̄2h显著;4h慢波睡眠(SWS)明显减少,该效应同样以注射后第1 ̄2h显著;异相睡眠(PS)无明显变化。小剂量L-NAME(0.2mg,5μl)对大鼠的W、SWS、PS无明显影响;同样方  相似文献   

7.
下丘脑外侧区注射TRH对大鼠胃酸分泌的影响   总被引:2,自引:2,他引:0  
本文采用连续收集胃腔灌流法,观察下丘脑外侧区(LHA)注射促甲状腺激素释放激素(TRH)对大鼠胃酸分泌的影响,并分析TRH在LHA促进胃酸分泌的作用机制。结果表明:(1)LHA注射TRH(1μg)明显地刺激胃酸分泌;(2)预先向LHA注射酚妥拉明(10μg)、美多心安(5μg)及胃泌素抗体1μl(1:640)并不影响TRH的泌酸作用,如预先向LHA注射阿托品(5μg)则可消除TRH的泌酸效应;(3)垂体摘除及肾上腺切除均不影响TRH的泌酸作用;(4)隔下迷走神经切断后,LHA注入TRH的泌酸效应仍然出现,但持续时间显著缩短;腹腔交感神经节摘除后,TRH仍能促进胃酸分泌,但分泌量少而平稳。以上结果提示:LHA是TRH中枢泌酸效应的有关结构之一,其中枢机制是通过胆碱能M受体中介的,腹腔交感神经节和膈下迷走神经是TRH泌酸效应的传出途径。前者引起的泌酸反应出现较早且引起泌酸高峰,但持续时间短;后者则引起低平的持续分泌。  相似文献   

8.
高位胸髓横断(T_1或 T_2)和切断双侧臂丛的“孤立脑”家兔可以长期维持自主腹式呼吸。此制备的睡眠-觉醒周期可明确地分为四个时相,即觉醒期、慢波浅醒期、慢波深睡期和快眼动睡眠期。与正常家兔的睡眠周期相比,此制备的周期持续时间大为缩短,深睡期和快眼动睡眠期明显减少。  相似文献   

9.
目的:研究通过环境光扰乱正常昼夜节律对睡眠的影响。方法:使用小鼠昼夜节律模型(20小时一个循环,10小时见光,10小时避光),利用小鼠睡眠生物解析系统,记录脑电波和肌电波,分析睡眠觉醒量、不同时间睡眠觉醒波delta功率和睡眠时相转换等参数。结果:昼夜节律干扰后导致昼夜觉醒差异、非快速眼动睡眠差异(NREM),和快速眼动睡眠(REM)差异消失(P0.05),昼夜节律干扰后增加了觉醒和NREM睡眠之间的转换次数(P0.05),昼夜节律紊乱的光照时相在开始时没有delta功率减弱征象(P0.05)。结论:昼夜节律模型不会导致典型的睡眠剥夺,但是会对睡眠时间和质量会产生影响。本研究一步证实昼夜节律对睡眠调节有着重要的作用。  相似文献   

10.
本实验用细胞外记录法,观察大鼠外侧隔核(LS)微量注射促甲状腺素释放激素(TRH)对丘脑束旁核痛兴奋神经元(PEN)放电的影响。结果如下:(1)LS注射TRH对束旁核PEN痛放电产生明显的抑制效应;TRH的最大抑制效应及持续时间与TRH剂量(1,2.5,5μg/1μl)的对数呈正线性相关;(2)预先 LS 注射纳洛酮(3μg/1 μl)不能改变TRH抑制柬旁核PEN痛放电效应;(3)预先LS注射阿托品(5μg/lμl)阻断了TRH对束旁核PEN痛放电的抑制效应。结果表明:LS是TRH参与镇痛的一个有效的作用部位。LS胆碱能M受体可能参与了TRH的抑制PEN痛放电效应,而TRH的抑制效应未涉及阿片受体。  相似文献   

11.
We have studied the effects of local injections of histaminergic and antihistaminic drugs on the sleep-waking cycle in the cat. Microinjections of alpha-fluoromethylhistidine (alpha-FMH), a specific inhibitor of histidine decarboxylase, in the ventrolateral posterior hypothalamus, where histamine-immunoreactive neurons have been recently identified, resulted in a significant decrease in wakefulness (W) and increase in deep slow wave sleep (SWS). On the other hand, microinjections of SKF-91488 (Homodimaprit), a specific inhibitor of histamine-N-methyltransferase, increased W and decreased SWS and paradoxical sleep (PS). Microinjections of histamine also produced an increase of W, while this effect was abolished by pretreatment with mepyramine, an H1-histamine receptor antagonist.  相似文献   

12.
To assess to what extent auditory sensory deprivation affects biological rhythmicity, sleep/wakefulness cycle and 24 h rhythm in locomotor activity were examined in golden hamsters after bilateral cochlear lesion. An increase in total sleep time as well as a decrease in wakefulness (W) were associated to an augmented number of W episodes, as well as of slow wave sleep (SWS) and paradoxical sleep (PS) episodes in deaf hamsters. The number of episodes of the three behavioural states and the percent duration of W and SWS increased significantly during the light phase of daily photoperiod only. Lower amplitudes of locomotor activity rhythm and a different phase angle as far as light off were found in deaf hamsters kept either under light-dark photoperiod or in constant darkness. Period of locomotor activity remained unchanged after cochlear lesions. The results indicate that auditory deprivation disturbs photic synchronization of rhythms with little effect on the clock timing mechanism itself.  相似文献   

13.
M R Dzoljic 《Prostaglandins》1978,15(2):317-324
The experiments were carried out to investigate the effects of prostaglandins (PGs) on the sleep pattern in the cat, and in normal and EFAD rats. The data indicate that the duration of slow wave sleep (SWS) was significantly longer in EFAD rats compared with the normal rats. However, no difference in the REM sleep was observed between the two groups. Intraventricular (i.vc. )administration of PGE1, PGE2 and PGF2alpha increased wakefulness without a significant alteration of REM sleep. PGE1 administered i.vc. did not alter the duration of SWS or REM sleep in the chronic cat, but induced ponto-geniculo-occipital (PGO) waves (spikes) which are the phasic phenomenon of REM sleep. The fact that previous administration of 5-hydroxytryptophane abolished the PGE1-induced PGO spiking, might indicate that this drug triggered the spikes mainly via the functional inhibition of the serotonergic system.  相似文献   

14.
Electrographic and behavioural observations were conducted on two male and two female captive starlings (Sturnus vulgaris) under natural illumination conditions during autumn. Polygraphically sleep and wakefulness of starling were similar to those of other birds. Starling's total sleep (TS) and slow wave sleep (SWS) lasted 39.0 +/- 1.4% and 38.3 +/- 1.7% of the 24-h period respectively. Paradoxical sleep (PS) was 1.8 +/- 0.2% of the total sleep time. The mean durations individual of TS, SWS and PS episodes were 6.8 +/- 0.2 min, 5.0 +/- 1.0 min and 18 +/- 3 s respectively. The daily percentage of SWS was correlated with the mean episode duration while that of PS was correlated with the number of episodes rather than with the mean episode duration. Starling females spent in sleep a greater percentage of the 24-h period than males.  相似文献   

15.
Variations of brain tissue redox state potential (E) of freely-moving white rats (300-350 g) in cycles of wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS) were measured by platinum electrodes symmetrically implanted into the frontal and occipital cortices and hippocampus. In addition, EMG of neck muscles and general motor activity of animals were recorded. The common reference electrode was implanted in the nasal bone. It was shown that in some brain sites (called active), episodes of W and PS were accompanied by a rise of E, and during transitions from W and PS to SWS, E dropped. The value of E varied in the range of 100 mV. It is suggested that transitions from W and PS to SWS are accompanied by shifts in the balance between the main energy sources. Oxidative phosphorylation prevails in W and PS, whereas aerobic glycolysis is the main source of energy during SWS. We think that this suggestion is supported both by a decrease in E in SWS and its oscillations typical of glucolytic processes [Aon et al., 1992]. Recent literature data [Bitter et al., 1996] suggest that astroglia is the main compartment for aerobic glycolysis.  相似文献   

16.
The experiments were carried out to investigate the effects of prostaglandins (PGs) on the sleep pattern in the cat, and in normal and EFAD rats.The data indicate that the duration of slow wave sleep (SWS) was significantly longer in EFAD rats compared with the normal rats. However, no difference in the REM sleep was observed between the two groups. Intraventricular (i.vc.) administration of PGE1, PGE2 and PGF increased wakefulness without a significant alteration of REM sleep.PGE1 administered i.vc. did not alter the duration of SWS or REM sleep in the chronic cat, but induced ponto-geniculo-occipital (PGO) waves (spikes) which are the phasic phenomenon of REM sleep.The fact that previous administration of 5-hydroxytryptophane abolished the PGE1-induced PGO spiking, might indicate that this drug triggered the spikes mainly via the functional inhibition of the serotonergic system.  相似文献   

17.
In the rook, Corvus frugilegus, electrographic and behavioural correlates of sleep and wakefulness have been determined under natural lighting conditions. Slow wave sleep (SWS) was characterized by high amplitude slow EEG activity, low neck EMG, and behavioural inactivity. Paradoxical sleep (PS) was characterized by low amplitude fast EEG activity and inconsistent decrease in EMG. PS episodes always commenced with head downward. Several eye movements occurred activity were present. The rook spent in sleep 31.8% of the 24-h period. PS however, eye movements, high tonic neck EMG activity, and behavioural activity were present. The rook spent in sleep 31.8% of the 24-h period. PS constituted 1.8% of total sleep, while the rest of total sleep was occupied by SWS. On the average, episodes of SWS and PS lasted 10.8 min and 24 s respectively. The daily percentage of SWS was highly correlated with the mean episode duration. PS amount was better correlated with the number of episodes than with their mean duration. Our data suggest that over-short period of recovery from surgery and adaptation with implanted electrodes could lead to underestimation of sleep duration in rook.  相似文献   

18.
The genetic basis of rest–activity circadian alternation in animal behavior is considered in the evolutionary range from bacteria to mammals. We scrutinize various concepts of sleep development in the animal world evolution as well as the I.G. Karmanova’s theory of the sleep–wake cycle evolution in vertebrates, beginning from wakefulness–primary sleep (or protosleep) in fish and amphibians through wakefulness–intermediate sleep in reptiles to wakefulness–slow wave sleep (SWS) and paradoxical sleep (PS) in birds and mammals. Primary sleep is represented by the three major sleep-like immobility states: catalepsy, catatonia and cataplexy. The main behavioral, somatovegetative and neurophysiological characteristics of primary sleep and the ancient activation pattern during primary sleep are described. The issues of which of these sleep manifestations are homologous to SWS, PS, hibernation and stress response are discussed. In conclusion, the general diagram of sleep evolution in vertebrates is presented, and the I.G. Karmanova’s contribution to evolutionary somnology is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号