首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primordial oocytes are a potential resource for medical and zoological application, but those of large animals have not yet been reported to show efficient embryonic development. In the present study, we established a pig model for production of blastocysts from primordial oocytes that had been grafted into nude mice and matured in vitro, in combination with fusion of cytoplasmic fragments. Neonatal porcine ovaries in which most follicles are at the primordial stage were minced and grafted into nude mice (Crlj:CD1-Foxn1nu). About 60 days after detection of vaginal opening, the mice were given 62.5 U/mL porcine FSH for 2 weeks by infusion to enhance follicular development. Developmentally competent oocytes collected from porcine ovaries (conventional oocytes) were matured in vitro and subjected to serial centrifugation to prepare cytoplasmic fragments without a metaphase plate (cytoplasts). Three cytoplasts were fused by electrostimulation to an oocyte retrieved from a host mouse (xenogeneic oocyte) and matured in vitro. Then these fused oocytes were fertilized and subsequently cultured in vitro. No blastocysts were generated from xenogeneic oocytes without fusion of cytoplasm. When xenogeneic oocytes had been fused with three cytoplasts, the blastocyst rate increased significantly to 14.3%, comparable to that for untreated conventional oocytes (20.0%). The numbers of cells in blastocysts for these fused oocytes (37.2 cells/blastocyst) were not significantly different from those for conventional oocytes (25.4 cells/blastocyst). Our findings show that it is possible to use primordial oocytes of large mammals in combination with xenografting of ovarian tissue and also ooplasmic fusion.  相似文献   

2.
In the present study, cashmere goat fetal fibroblasts were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1 (IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasts cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h. Parthenogenetic ooctyes were used as a model to investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO-Faa and CR1aa; 86.3% vs 83.9%, P>0.05 and 23.1% vs 17.2%,P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05). After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex-pressing red fluorescence. Two of the red fluorescent blastocysts were randomly selected to identify transgene by polymerase chain reaction. Both were positive. These results showed that: (i) RFP and Neor genes were correctly expressed indicating that transgenic somatic cell lines and positive trans-genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and optimization, transgenic cash-mere goat embryos expressing red fluorescence and containing an IGF1 expression cassette were obtained, which was sufficient for production of transgenic cashmere goats.  相似文献   

3.
We determined the efficacy of a microdrop vitrification procedure for cryopreservation of bovine oocytes, using vitrified oocytes as cytoplasts for intraspecies and intergeneric somatic cell nucleus transfer (NT). In vitro matured bovine MII oocytes were vitrified in microdrops with a vitrification solution containing 35% ethylene glycol, 5% polyvinyl pyrrolidone, and 0.4 M trehalose. After warming, approximately 80% of the vitrified oocytes were morphologically normal, and their enucleation rate was similar to that of fresh oocytes. The NT embryos constructed with bovine cumulus cells and the vitrified oocytes developed similar to blastocysts constructed with fresh oocytes, although the cell number of NT blastocysts originating from vitrified oocytes was lower than that of the fresh control. In a second experiment, we examined the development of NT embryos constructed with vitrified bovine oocytes and bovine fibroblasts (intraspecies NT embryos) or swamp buffalo fibroblasts (intergeneric NT embryos). There were no differences between the intraspecies and intergeneric NT embryos in fusion, cleavage and development to blastocysts, except for lower cell numbers in the intergeneric NT blastocysts. In conclusion, the efficacy of this microdrop vitrification procedure and the production of swamp buffalo NT blastocysts using vitrified bovine oocytes was demonstrated.  相似文献   

4.
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.  相似文献   

5.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

6.
Lee GS  Hyun SH  Kim HS  Kim DY  Lee SH  Lim JM  Lee ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(9):1949-1957
This study was conducted to improve a porcine somatic cell nuclear transfer (SCNT) technique by optimizing donor cell and recipient oocyte preparations. Adult and fetal fibroblasts, and cumulus and oviduct cells were used as donor cells, and in vivo- and in vitro-matured oocytes were employed as recipient oocytes. The percentages of fusion and development to the blastocyst stage, the ratio of blastocysts to 2-cell embryos, and cell number of blastocysts were monitored as experimental parameters. In Experiment 1, donor cells of four different types were transferred to enucleated oocytes matured in vitro, and more (P < 0.05) blastocysts were derived from SCNT of fetal fibroblasts than from that of other cells (15.9% versus 3.1-7.9%). For SCNT using fetal fibroblasts, increasing the number of subcultures up to 15 times did not improve developmental competence to the blastocyst stage (12.2-16.7%). In Experiment 2, fetal fibroblasts were transferred to enucleated oocytes that matured in vivo or in vitro. When parthenogenetic activation of both types of oocytes was conducted as a preliminary control treatment, a significant increase in blastocyst formation was found for in vivo-matured compared with in vitro-matured oocytes (36.4% versus 29.5%). However, no improvement was achieved in SCNT using in vivo-matured oocytes. In conclusion, the type of donor somatic cell is important for improving development after porcine SCNT, and fetal fibroblasts were the most effective among examined cells. A system with good reproducibility has been established using fetal fibroblasts as the donor karyoplast after subculturing 1-10 times, and using both in vivo and in vitro-matured oocytes as the recipient cytoplast.  相似文献   

7.
8.
Khatir H  Anouassi A 《Theriogenology》2008,70(9):1471-1477
Somatic cloning may enable the maintenance/expansion of the population of camels with the highest potential for milk production or the best racing performances. However, there have been no reports of embryonic or somatic nuclear transfer in camels. The aim of this study was to produce dromedary embryos by nuclear transfer using in vitro matured oocytes and two somatic cells from two sources (adult fibroblasts or granulosa cells). A total of 58 adult females were superstimulated by a single dose of eCG (3500 IU). Ten days later, their ovaries were collected postmortem. Cumulus–oocytes-complexes (COCs) were aspirated from stimulated follicles and were matured in vitro for 30 h. Fibroblasts (from live adult male) and granulosa cells (from slaughtered adult females) were used as donor karyoplasts and injected into mature enucleated dromedary oocytes.The cleavage rate was significantly higher (P < 0.05) for embryos reconstructed with fibroblasts (59%) versus those with granulosa cells (45%). However, there was no difference between the two groups in the proportion of cloned embryos reaching the blastocyst stage (fibroblasts: 14% vs. granulosa cells: 15%) or those that hatched (fibroblasts: 10% vs. granulosa cells: 12%). The viability of reconstructed dromedary embryos from the two sources of donor cells (fibroblasts; n = 5 vs. granulosa cells; n = 7) was examined by transferring them to synchronized recipients. Two females (fibroblasts: 1/5; 20%, granulosa cells: 1/7; 14%) were confirmed pregnant by ultrasonography at 15 and 25 days following transfer. Later, the pregnancies were followed by pregnancy empirical-symptoms. These two pregnancies were lost between 25 and 60 days following transfer, respectively.In conclusion, the present study shows for the first time that the development of dromedary NT embryos derived from either adult fibroblasts or granulosa cells can occur in vitro and the transfer of these cloned embryos to recipients can result in pregnancies.  相似文献   

9.
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.  相似文献   

10.
The present study compared the potential of nuclear-transferred porcine oocytes receiving fetal somatic cells by direct injection and cell fusion procedures to develop into blastocysts. After brief treatment of in vitro matured oocytes with demecolcine and sucrose, the protrusion containing the condensed chromosome mass was mechanically removed. Single donor cells were fused with enucleated oocytes following electric pulses or injected into oocytes by piezo-actuated microinjection. The reconstruction rate by direct injection was significantly higher than that following cell fusion (89 vs. 48%). The potential of nuclear-transferred oocytes to develop into blastocysts, however, was not different between injection and fusion methods (13% vs. 18%). Total cell number, inner cell mass, and trophectoderm cell numbers of cloned blastocysts were also not different between the two groups.  相似文献   

11.
The present study was carried out to examine the activation and development of cloned embryos produced by transferring miniature pig somatic cells into enucleated farm pig oocytes after exposing to ultrasound. The rates of the pronucleus-like structure formation and polar body-like structure extrusion in embryos exposed to ultrasound did not differ from those applied electric pulses. Although there was no significant difference in the blastocyst formation rates between different activation methods, the mean number of cells in the blastocysts developed from embryos activated by exposing to ultrasound was significantly (p < 0.05) higher than that obtained by applying electric pulses. The results of the present study showed that ultrasound stimulation can induce the activation and in vitro development of cloned embryos derived from miniature pig somatic cells.  相似文献   

12.
To improve the efficiency of somatic cell nuclear transfer (SCNT) in dogs, we evaluated whether or not the interval between fusion and activation affects the success rate of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells from a male or female Golden Retriever. In total, 151 and 225 reconstructed oocytes were transferred to 9 and 14 naturally synchronized surrogates for male and female donor cells, respectively. Chromosomal morphology was evaluated in 12 oocytes held for an interval of 2 hr between fusion and activation and 14 oocytes held for an interval of 4 hr. Three hundred seventy-six and 288 embryos were transferred to 23 and 16 surrogates for the 2 and 4 hr interval groups, respectively. Both the male (two pregnant surrogates gave birth to three puppies) and female (one pregnant surrogate gave birth to one puppy) donor cells gave birth to live puppies (P > 0.05). In the 2 hr group, significantly more reconstructed oocytes showed condensed, metaphase-like chromosomes compared to the 4 hr group (P < 0.05). A significantly higher pregnancy rate and a greater number of live born puppies were observed in the 2 hr group (13.0% and 1.1%, respectively) compared to the 4 hr group (0%) (P < 0.05). In total, three surrogate dogs carried pregnancies to term and four puppies were born. These results demonstrate that decreasing the interval between fusion and activation increases the success rate of clone production and pregnancy. These results may increase the overall efficiency of SCNT in the canine family.  相似文献   

13.
The influence of the stage of the cell cycle of donor nuclei on the development of mouse oocytes enucleated at telophase I was examined. After nuclear transplantation and activation, a high proportion of the oocytes remodelled a nucleus, emitted a polar body and formed a pronuclear-like nucleus. Most of the reconstituted embryos that received an interphase nucleus 30-32 h or 34-36 h after treatment with human chorionic gonadotrophin (hCG) arrested at the 2-cell stage. The reconstituted embryos were able to develop to blastocysts when nuclei from late 2-cell embryos (44-46 and 48-50 h after hCG) were transferred to the oocytes. The resulting blastocysts were transferred to recipients and ten live young were obtained from the embryos that formed a pronuclear-like nucleus after extrusion of a polar body. Thus, the developmental ability of the reconstituted embryos was critically influenced by the stage of the cell cycle of the donor nuclei.  相似文献   

14.
Bovine oocyte cytoplasm has been shown to support the development of nuclei from other species up to the blastocyst stage. Somatic cell nuclei from buffalo fetal fibroblasts have been successfully reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts. The aim of this study was to compare the in vitro development of fetal and adult buffalo cloned embryos after the fusion of a buffalo fetal fibroblast, cumulus or oviductal cell with bovine oocyte cytoplasm. The fusion of oviductal cells with enucleated bovine oocytes was higher than that of fetal fibroblasts or cumulus cells (83% versus 77 or 73%, respectively). There was a significantly higher cleavage rate (P < 0.05) for fused nuclear transferred embryos produced by fetal fibroblasts and oviductal cells than for cumulus cells (84 or 78% versus 68%, respectively). Blastocyst development in the nuclear transferred embryos produced by fetal fibroblasts was higher (P < 0.05) than those produced either by cumulus or oviductal cells. Chromosome analysis of cloned blastocysts confirmed the embryo was derived from buffalo donor nuclei. This study demonstrates that nuclei from buffalo fetal cells could be successfully reprogrammed to develop to the blastocyst stage at a rate higher than nuclei from adult cells.  相似文献   

15.
The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.  相似文献   

16.
Embryo cryopreservation is an important tool to preserve endangered species. As a cryoprotectant for mouse oocytes, antifreeze protein from Anatolica polita (ApAFP914) has demonstrated utility. In the present study, the effects of controlled slow freezing and vitrification methods on the survival rate of sheep oocytes fertilized in vitro after freezing-thawing were compared. Different ApAFP914 concentrations were added to the vitrification liquid for exploring the effect of antifreeze protein on the warmed embryos. The results showed that the survival and hatching rates of in vitro derived embryos were significantly higher than that of the slow freezing method. Furthermore, among the cryopreserved embryos at different developmental stages, the survival and hatching rates of the expanded blastocyst were significantly higher than those of the blastocysts, early blastocysts and morula. The survival and the hatching rates of the fast-growing embryos were both significantly higher than that of the slow-growing embryos. Additionally, treatment of ApAFP914 (5–30 μg/mL) did not increase the freezing efficiency of the 6–6.5 d embryos. However, addition of 10 μg/mL of ApAFP914 significantly increased the hatching rate of slow-growing embryos. In conclusion, our study suggests that the vitrification is better than the slow freezing method for the conservation of in vitro sheep embryos, and supplementation of ApAFP914 (10 μg/mL) significantly increased the hatching rate of slow-growing embryos after cryopreservation.  相似文献   

17.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

18.

Background

Many cloned animals have been created by transfer of differentiated cells at G0/G1 or M phase of the cell cycle into enucleated M II oocytes having high maturation/meiosis/mitosis-promoting factor activity. Because maturation/meiosis/mitosis-promoting factor activity during oocyte maturation is maximal at both M I and M II, M I oocytes may reprogram differentiated cell nuclei as well. The present study was conducted to examine the developmental ability in vitro of porcine embryos reconstructed by transferring somatic cells (ear fibroblasts) into enucleated M I or M II oocytes.

Results

Analysis of the cell cycle stages revealed that 91.2 ± 0.2% of confluent cells were at the G0/G1 phase and 54.1 ± 4.4% of nocodazole-treated cells were at the G2/M phase, respectively. At 6 h after activation, nuclear swelling was observed in 50.0-88.9% and 34.4-39.5% of embryos reconstituted with confluent cells and nocodazole-treated cells regardless of the recipient oocytes, respectively. The incidence of both a swollen nucleus and polar body was low (6.3-10.5%) for all nocodazole-treated donor cell regardless of the recipient oocyte. When embryos reconstituted with confluent cells and M I oocytes were cultured, 2 (1.5%) blastocysts were obtained and this was significantly (P < 0.05) lower than that (7.6%) of embryos produced by transferring confluent cells into M II oocytes. No reconstructed embryos developed to the blastocyst stage when nocodazole-treated cells were used as donors.

Conclusions

Porcine M I oocytes have a potential to develop into blastocysts after nuclear transfer of somatic cells.  相似文献   

19.
Intergeneric embryos were constructed by nuclear transfer using Mountain Bongo antelope somatic cells fused with enucleated bovine oocytes and their subsequent development in vitro was investigated. After two to six passages, starved or non-starved skin fibroblast cells were used as donor nuclei. In vitro matured bovine oocytes were enucleated by squeezing the first polar body and surrounding cytoplasm through a slit in the zona pellucida. After injection of a somatic cell into the perivitelline space, couplets were fused electrically and activated chemically, then subjected to different embryo culture treatments. Serum starvation had no effect on the frequency of cleavage to two cells or on development to the blastocyst stage in either sequential hamster embryo culture medium (HECM)-6/TCM-199 + serum or HECM-9/TC-199 + serum, or modified synthetic oviduct fluid (mSOF) culture medium. When couplets from non-starved donor nuclei were cultured, the frequency of cleavage (66 +/- 8% vs. 44 +/- 5%), development to >/=9 cells (46 +/- 6% vs. 24 +/- 4%), and formation of blastocysts (24 +/- 5% vs. 11 +/- 2%) were all significantly higher (p < 0.05) in the HECM-6 medium than in mSOF medium. In conclusion, bovine oocytes can support blastocyst development after intergeneric fusion with bongo fibroblasts. This technique could potentially be used as an alternative to using scarce bongo oocytes in attempts to propagate these endangered animals.  相似文献   

20.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号