首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the only viable cloned offspring born in dogs was a male, the purpose of the present study was to produce female puppies by somatic cell nuclear transfer (SCNT). Adult ear fibroblasts from a 2-month-old female Afghan hound were isolated and used as donor cells. In vivo-matured canine oocytes surgically collected (approximately 72h after ovulation) from the oviducts of 23 donors were used for SCNT. After removal of the cumulus cells, oocytes were enucleated, microinjected, fused with a donor cell, and activated. A total of 167 reconstructed SCNT embryos were surgically transferred (Day 0) into the oviducts of 12 recipient bitches (average 13.9 embryos/recipient, range 6-22) with spontaneous, synchronous estrous cycles. Three pregnancies were detected by ultrasonography on Day 23, maintained to term, and three healthy female puppies (520, 460, and 520g), were delivered by Caesarean section on Day 60. These puppies were phenotypically and genotypically identical to the cell donor. In conclusion, we have provided the first demonstration that female dogs can be produced by nuclear transfer of ear fibroblasts into enucleated canine oocytes.  相似文献   

2.
Lee GS  Kim HS  Hyun SH  Lee SH  Jeon HY  Nam DH  Jeong YW  Kim S  Kim JH  Han JY  Ahn C  Kang SK  Lee BC  Hwang WS 《Theriogenology》2005,63(4):973-991
This study was performed to develop a system for porcine somatic cell nuclear transfer (SCNT) and to produce human erythropoietin (hEPO)-transgenic cloned piglets. Porcine fetal fibroblasts were transfected with an expression plasmid (phEPO-GFP). In Experiment 1, the effect of transfection of phEPO-GFP transgene on development of porcine SCNT embryos was investigated. Three fetal fibroblast cell lines (two male and one female) with or without transfected with phEPO-GFP trasngene were used as donor cells for SCNT. Lower fusion rates were observed in two lines of transfected cells as compared to those of the control cells. In Experiment 2, the effect was examined of elevated Ca2+ concentration in the fusion/activation medium on development of transfected SCNT embryos. The rates of fusion and blastocyst formation were significantly increased by supplementing 1.0 mM of CaCl2 (versus 0.1 mM) into the fusion/activation medium. In Experiment 3, the effect was studied of a chemical treatment (cytochalasin B) after electric fusion/activation (F/A) on porcine transgenic SCNT embryo development. The electric F/A + cytochalasin B treatment increased total cell number in blastocysts as compared to that of electric F/A treatment alone. In Experiment 4, transgenic cloned embryos were transferred to surrogate mothers and a total of six cloned piglets were born. Transgenic cloned piglets were confirmed by polymerase chain reaction and Southern blot analysis. From a single surrogate mother, female and male transgenic cloned piglets were produced by transferring pooled SCNT embryos derived from female and male transfected donor cells. In conclusion, a system for porcine SCNT was developed and led to the successful production of hEPO transgenic cloned piglets.  相似文献   

3.
Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications.  相似文献   

4.
The present study was undertaken to evaluate two enucleation methods for somatic cell nuclear transfer (SCNT), and to standardize the optimum number of embryos for transfer to each recipient for canines. Oocytes retrieved from outbreed dogs were reconstructed with adult somatic cells from a male Beagle dog. A total of 134 or 267 oocytes were enucleated either by aspiration or squeezing method, fused with two DC pulses of 1.75 kV/cm for 15 μs electrical stimulation, chemically activated after 1 h of fusion using 10 μM calcium ionophore for 4 min and cultured 4 h in 1.9 mM 6-dimethylaminopurine. Finally, 103 or 214 embryos for aspiration or squeezing method were transferred to 6 or 11 naturally synchronized recipients, respectively. A total of 53, 317 and 342 embryos were transferred to 7, 17 and 12 recipients for the group of 4–10, 11–25 and 26–40 embryos, respectively. There was no difference between fusion rate (76.87% vs. 80.15%), full term pregnancy rate (16.66% vs. 27.27%) and percent of live puppies born (0.97% vs. 1.87%) for aspiration and squeezing method (P > 0.05). Production efficiency of cloned dogs was significantly affected by the number of embryos transferred to each recipient. No pregnancy was established for the group of 4–10 embryos (n = 7) and 26–40 embryos (n = 12) while pregnancy was detected in 23.53% recipients received a group of 11–25 embryos (n = 17). Among them, five (1.76%) live puppies were born (P < 0.05). These data show an increase in the overall efficiency of SCNT in canine species.  相似文献   

5.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

6.
Jang G  Hong SG  Oh HJ  Kim MK  Park JE  Kim HJ  Kim DY  Lee BC 《Theriogenology》2008,69(5):556-563
To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed recipient female dogs.  相似文献   

7.
Cloned ferrets produced by somatic cell nuclear transfer   总被引:10,自引:0,他引:10  
Somatic cell nuclear transfer (SCNT) offers great potential for developing better animal models of human disease. The domestic ferret (Mustela putorius furo) is an ideal animal model for influenza infections and potentially other human respiratory diseases such as cystic fibrosis, where mouse models have failed to reproduce the human disease phenotype. Here, we report the successful production of live cloned, reproductively competent, ferrets using species-specific SCNT methodologies. Critical to developing a successful SCNT protocol for the ferret was the finding that hormonal treatment, normally used for superovulation, adversely affected the developmental potential of recipient oocytes. The onset of Oct4 expression was delayed and incomplete in parthenogenetically activated oocytes collected from hormone-treated females relative to oocytes collected from females naturally mated with vasectomized males. Stimulation induced by mating and in vitro oocyte maturation produced the optimal oocyte recipient for SCNT. Although nuclear injection and cell fusion produced mid-term fetuses at equivalent rates (approximately 3-4%), only cell fusion gave rise to healthy surviving clones. Single cell fusion rates and the efficiency of SCNT were also enhanced by placing two somatic cells into the perivitelline space. These species-specific modifications facilitated the birth of live, healthy, and fertile cloned ferrets. The development of microsatellite genotyping for domestic ferrets confirmed that ferret clones were genetically derived from their respective somatic cells and unrelated to their surrogate mother. With this technology, it is now feasible to begin generating genetically defined ferrets for studying transmissible and inherited human lung diseases. Cloning of the domestic ferret may also aid in recovery and conservation of the endangered black-footed ferret and European mink.  相似文献   

8.
Hyun S  Lee G  Kim D  Kim H  Lee S  Nam D  Jeong Y  Kim S  Yeom S  Kang S  Han J  Lee B  Hwang W 《Biology of reproduction》2003,69(3):1060-1068
A system for somatic cell nuclear transfer (SCNT) was developed and led to the successful production of GFP-transfected piglets. In experiment 1, two groups of SCNT couplets reconstructed with porcine fetal fibroblasts (PFF) and enucleated sow (S) or gilt oocytes (G): 1). received a simultaneous electrical fusion/activation (S-EFA or G-EFA groups), or 2). were electrically fused followed by activation with ionomycin (S-EFIA or G-EFIA groups), or 3). were subjected to electrical fusion and subsequent activation by ionomycin, followed by 6-dimethylaminopurine treatment (S-EFIAD or G-EFIAD groups). The frequency of blastocyst formation was significantly higher in S-EFA (26%) compared with that observed in the other experimental groups (P < 0.05), but not with S-EFIA (23%). Sow oocytes yielded significantly higher cleavage frequencies (68%-69%) and total cell numbers of blastocysts when compared with gilt oocytes, regardless of fusion/activation methods (P < 0.05). However, the ratio of inner cell mass (ICM)/total cells in G-EFA and S-EFA was significantly lower than in the other groups (P < 0.05). In experiment 2, SCNT couplets reconstructed with PFF cultured in the presence or absence of serum and enucleated sow oocytes were subjected to EFA. There were no effects of serum starvation on cell-cycle synchronization, developmental competence, total cell numbers, and ratio of ICM/total cells. In experiment 3, SCNT couplets reconstructed with PFF transfected with an enhanced green fluorescence protein (EGFP) gene using FuGENE-6 and enucleated sow oocytes were subjected to EFA and cultured for 7 days. Expression frequencies of GFP gene during development were 100%, 78%, 72%, 71%, and 70% in fused, two-cell, four to eight cells, morulae, and blastocysts, respectively. In experiment 4, SCNT embryos derived from different recipient cytoplasts (sows or gilts) and donor karyoplasts (PFF or GFP-transfected) were subjected to EFA and transferred to the oviducts of surrogates. The pregnancy rates in SCNT embryos derived from sow oocytes (66%-69%) were higher than those with gilt oocytes (23%-27%) regardless of donor cell types. One live offspring from GFP-SCNT embryos and two from PFF-SCNT embryos were delivered. Microsatellite analysis confirmed that the clones were genetically identical to the donor cells and polymerase chain reaction (PCR) from genomic DNA of cloned piglets and subsequent southern blot analysis confirmed the integration of EGFP gene into chromosomes.  相似文献   

9.
Endangered wolves cloned from adult somatic cells   总被引:1,自引:0,他引:1  
Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.  相似文献   

10.
Yin XJ  Lee HS  Yu XF  Kim LH  Shin HD  Cho SJ  Choi EG  Kong IK 《Theriogenology》2008,69(8):1001-1006
We successfully produced second-generation cloned cats by somatic cell nuclear transfer (SCNT) using skin cells from a cloned cat. Skin cells from an odd-eyed, all-white male cat (G0 donor cat) were used to generate a cloned cat (G1 cloned cat). At 6 months of age, skin cells from the G1 cloned cat were used for SCNT to produce second-generation cloned cats. We compared the in vitro and in vivo development of SCNT embryos that were derived from the G0 donor and G1 cloned donor cat's skin fibroblasts. The nuclei from the G0 donor and G1 cloned donor cat's skin fibroblasts fused with enucleated oocytes with equal rates of fusion (60.7% vs. 58.8%, respectively) and cleavage (66.3% vs. 63.4%). The 2-4-cell SCNT embryos were then transferred into recipients. One of the five recipients of G0 donor derived NT embryos (20%) delivered one live male cloned kitten, whereas 4 of 15 recipients of the G1 cloned donor cat derived NT embryos (26%) delivered a total of seven male second-generation cloned kittens (four live kittens from one surrogate, plus two stillborn kittens, and one live kitten that died 2d after birth from three other surrogate mothers). The four second-generation cloned kittens from the same surrogate all had a white coat color; three of the four second-generation cloned kittens had two blue eyes, and one of the second-generation cloned kittens had an odd-eye color. Despite low cloning efficiency, cloned cats can be used as donor cats to produce second-generation cloned cats.  相似文献   

11.
Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis.  相似文献   

12.
Since the establishment of production of viable cloned dogs by somatic cell nucleus transfer, great concern has been given to the reproductive abilities of these animals (Canis familiaris). Therefore, we investigated reproductive activity of cloned dogs by (1) performing sperm analysis using computer-assisted sperm analysis and early embryonic development, (2) assessing reproductive cycling by measuring serum progesterone (P4) levels and performing vaginal cytology, and (3) breeding cloned dogs using artificial insemination. Results showed that most parameters of sperm motility in a cloned male dog were within the reference range, and in vivo–matured oocytes from a noncloned female were successfully fertilized by spermatozoa from a cloned male dog and develop normally to the 8-cell stage. Three cloned female dogs displayed normal patterns of P4 levels and morphologic changes of the vaginal epithelium. Two cloned female dogs became pregnant using semen from a cloned male dog and successfully delivered 10 puppies by natural labor. In conclusion, these data demonstrated that both cloned male and female dogs are fertile, and their puppies are currently alive and healthy with normal growth patterns.  相似文献   

13.
Mitochondrial distribution and microtubule organization were examined in porcine oocytes after parthenogenesis, fertilization and somatic cell nuclear transfer (SCNT). Our results revealed that mitochondria are translocated from the oocyte's cortex to the perinuclear area by microtubules that either constitute the sperm aster in in vitro-fertilized (IVF) oocytes or originate from the donor cell centrosomes in SCNT oocytes. The ability to translocate mitochondria to the perinuclear area was lower in SCNT oocytes than in IVF oocytes. Sperm-induced activation rather than electrical activation of SCNT oocytes as well as the presence of the oocyte spindle enhanced perinuclear mitochondrial association with reconstructed nuclei, while removal of the oocyte spindle prior to sperm penetration decreased mitochondrial association with male pronuclei without having an apparent effect on microtubules. We conclude that factors derived from spermatozoa and oocyte spindles may affect the ability of zygotic microtubules to translocate mitochondria after IVF and SCNT in porcine oocytes. Mitochondrial association with pronuclei was positively related with embryo development after IVF. The reduced mitochondrial association with nuclei in SCNT oocytes may be one of the reasons for the low cloning efficiency which could be corrected by adding yet to be identified, sperm-derived factors that are normally present during physiological fertilization.  相似文献   

14.
Two media used to mature adult porcine oocytes for somatic cell nuclear transfer were compared. In the first experiment, parthenogenetic embryos were produced using a maturation medium used by us previously to clone pigs (OMM199) and that described by Kühholzer et al. (2001) to transport oocytes overnight (BOMED). There was no difference in maturation rates between the two different media. However, BOMED medium increased the percentage of parthenogenetic embryos that developed to the blastocyst stage compared with OMM199 (49% vs. 29%, respectively). In a second experiment, BOMED medium increased the percentage of SCNT embryos that developed to the blastocyst stage compared with OMM199 (22% vs. 8%, respectively). The efficiency of our cloning protocol using adult oocytes matured in BOMED medium was then determined by transferring SCNT embryos reconstructed using adult fibroblasts to synchronized recipients. Primary cultures of adult fibroblasts were obtained from two adult male pigs and used for SCNT (passages 2-4). Between 82 and 146 fused couplets were transferred to seven recipients synchronized 1 day behind the embryos. Five recipients (71% pregnancy rate) subsequently farrowed a total of 23 piglets (4.4 average litter size). Overall efficiencies (liveborn/embryos transferred) were 3.2% for all transfers and 4.3% for animals that gave birth.  相似文献   

15.
Liu J  Li LL  Du S  Bai XY  Zhang HD  Tang S  Zhao MT  Ma BH  Quan FS  Zhao XE  Zhang Y 《Theriogenology》2011,76(6):1076-1083
To improve the efficiency of somatic cell nuclear transfer (SCNT) in goats, we evaluated the effects of the interval between fusion and activation (1 to 5 h), cytochalasin B (CB) treatment after electrofusion, and the number of transferred embryos on the in vivo and in vitro development of cloned caprine embryos. The majority of the reconstructed embryos had condensed chromosomes and metaphase-like chromosomes at 2 and 3 h after fusion; cleavage and blastocyst rates from those two groups were higher (P < 0.05) than those of embryos activated 1, 4, or 5 h after fusion. Treatment with CB between fusion and activation improved in vitro and in vivo development of nuclear transfer (NT) goat embryos by reducing the fragmentation rate (P < 0.05). Although there were no significant differences in NT efficiency, pregnancy rate and kids born per recipient were increased by transfer of 20 or 30 embryos per recipient compared with 10 embryos. We concluded that CB treatment for 2 to 3 h between fusion and activation was an efficient method for generating cloned goats by somatic cell NT. In addition, increasing the number of embryos transferred to each recipient resulted in more live offspring from fewer recipients.  相似文献   

16.
17.
The present study was designated to examine the possibility of producing somatic cell nuclear transfer (SCNT) embryos in pigs using oocyte cytoplasm fragments (OCFs), prepared by centrifugations, as recipient cytoplasts. In Experiment 1, in vitro matured oocytes were centrifuged at 13,000 x g for 3, 6, and 9 min to stratify the cytoplasm, and then the oocytes were freed from zona pellucida and recentrifuged at 5,000 x g for 4 sec in Percoll gradient solution to produce OCFs as the source of recipient cytoplasts. It was found that a long duration of the first centrifugation tends to produce large-sized OCFs after the second centrifugation. In Experiment 2, two or three cytoplasts without chromosomes were aggregated, and then they were fused with a cumulus cell to produce SCNT embryos. The results showed that 66.4 +/- 9.4% of the reconstructed embryos underwent premature chromosome condensation at 1 h after activation, and 85.2 +/- 7.1% and 61.6 +/- 7.0% of them had pseudopronuclei at 10 and 24 h after activation, respectively. In Experiment 3, when SCNT embryos reconstructed by the fusion of three cytoplasts and one cumulus cell, a significantly higher (p < 0.05) rate of reconstructed embryos developed to the blastocyst stage (10.6 +/- 1.8%) than that of reconstructed with two cytoplasts and one cumulus cell (5.2 +/- 1.5%). These results indicate that cytoplasts obtained by two centrifugations can support the remodeling of a transferred somatic nucleus, resulting in the development of the reconstructed porcine embryos to the blastocyst stage.  相似文献   

18.
In this study we investigated spontaneous oocyte activation and developmental ability of rat embryos of the SD-OFA substrain. We also tried to improve the somatic cell nuclear transfer (SCNT) technique in the rat by optimizing methods for the production of reconstructed embryos. About 20% of oocytes extruded the second polar body after culture for 3 hr in vitro and 84% of oocytes were at the MII stage. MG132 blocked spontaneous activation but decreased efficiency of parthenogenetic activation. Pronuclear formation was more efficient in strontium-activated oocytes (66.1-80.9%) compared to roscovitine activation (24.1-54.5%). Survival rate after enucleation was significantly higher (89.4%) after slitting the zona pellucida and then pressing the oocyte with a holding pipette in medium without cytochalasin B (CB) compared to the conventional protocol using aspiration of the chromosomes after CB treatment (67.7%). Exposure of rat ova to UV light for 30 sec did not decrease their in vitro developmental capacity. Intracytoplasmic cumulus cell injection dramatically decreased survival rate of oocytes (42%). In contrast, 75.9% of oocytes could be successfully electrofused. Development to the 2-cell stage was reduced after SCNT (24.6% compared 94.6% in controls) and none from 244 reconstructed embryos developed in vitro beyond this stage. After overnight in vitro culture, 74.4% of the SCNT embryos survived and 56.1% formed pronuclei. The pregnancy rate of 33 recipients after the transfer of 695 of these cloned embryos was, however, very low (18.2%) and only six implantation sites could be detected (0.9%) without any live fetuses and offspring.  相似文献   

19.
The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.  相似文献   

20.
In several mammalian species including rats, successfully cloned animals have been generated using somatic cell nuclear transfer (SCNT). However, in the case of rats, additional treatment with MG132, a proteasome inhibitor, before enucleation of oocytes seems to be required for successful cloning because ovulated rat oocytes are spontaneously activated, and hence, their suppression is the key to successful cloning. A previous study on rats demonstrated that matured oocytes potentially possess lower cytostatic factor (CSF) activity compared to mouse oocytes, resulting in a low incidence of premature chromosome condensation in the reconstructed embryos after SCNT. It is known that mice having more than two pronuclei are generally observed in nuclear-transferred oocytes after induction of premature chromosome condensation, which implies successful reprogramming. This leads us to the hypothesis that MG132 treatment affects not only the inhibition of spontaneous activation but also the reprogramming and developmental ability of reconstructed rat embryos. If so, prolonged MG132 treatment during and/or after SCNT may further improve the survivability. However, the effect of MG132 treatment on reconstructed embryos after SCNT has been very limited in rats and other species. We show here that prolonged MG132 treatment during and after SCNT improves survival and the number of pronuclei in reconstructed rat embryos after activation. These reconstructed embryos treated before, during, and after SCNT showed significantly higher p34(cdc2) kinase activity involving CSF activity compared to that of the control embryos. On the other hand, p34(cdc2) kinase activity was not recovered in nuclear-transferred oocytes without MG132, which suggested that the enucleation had detrimental effects on the development of reconstructed oocytes. Taken together, MG132 treatment during SCNT increases survival and pronuclear numbers in reconstructed rat embryos via maintenance of high CSF activity. The data suggest that MG132 treatment is indispensable for at least rat SCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号