首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For production of viable somatic cell nuclear transferred (SCNT) miniature pig embryos, in vitro condition for controlling the quality of recipient oocytes derived from domestic pig ovaries should be evaluated. In the present study, to get information on optimal in vitro maturation (IVM) condition of oocytes, we investigated the effect of IVM duration of recipient oocytes on subsequent development of SCNT miniature pig embryos, the maturation-promoting factor (MPF) activity in recipient oocytes before and after SCNT, and the occurrence of premature chromosome condensation (PCC) and spindle morphologies of donor nuclei following SCNT. The optimal window of the IVM period in terms of in vitro developmental ability of SCNT embryos was determined to be 36-40 h after the start of IVM. The use of recipient oocytes matured for 36 and 40 h resulted in a high level of MPF activity before and after SCNT, and increased the occurrence of PCC in transferred nuclei compared to the use of oocytes matured for 44 and 52 h. The proportion of abnormal spindle-like structures increased as the IVM period was prolonged. In addition, SCNT embryos constructed from recipient cytoplasts obtained after 40 h of maturation by using fetal fibroblasts of miniature pigs were transferred to surrogate miniature pigs, and developed to full term. These results suggest that recipient oocytes matured for 36 h and 40 h effectively induce PCC with a normal cytoskeletal structure because of a high level of MPF activity; furthermore, the 40-h IVM period improves in vitro development of SCNT embryos to the blastocyst stage, resulting in the production of viable cloned miniature pigs.  相似文献   

2.
Lee GS  Hyun SH  Kim HS  Kim DY  Lee SH  Lim JM  Lee ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(9):1949-1957
This study was conducted to improve a porcine somatic cell nuclear transfer (SCNT) technique by optimizing donor cell and recipient oocyte preparations. Adult and fetal fibroblasts, and cumulus and oviduct cells were used as donor cells, and in vivo- and in vitro-matured oocytes were employed as recipient oocytes. The percentages of fusion and development to the blastocyst stage, the ratio of blastocysts to 2-cell embryos, and cell number of blastocysts were monitored as experimental parameters. In Experiment 1, donor cells of four different types were transferred to enucleated oocytes matured in vitro, and more (P < 0.05) blastocysts were derived from SCNT of fetal fibroblasts than from that of other cells (15.9% versus 3.1-7.9%). For SCNT using fetal fibroblasts, increasing the number of subcultures up to 15 times did not improve developmental competence to the blastocyst stage (12.2-16.7%). In Experiment 2, fetal fibroblasts were transferred to enucleated oocytes that matured in vivo or in vitro. When parthenogenetic activation of both types of oocytes was conducted as a preliminary control treatment, a significant increase in blastocyst formation was found for in vivo-matured compared with in vitro-matured oocytes (36.4% versus 29.5%). However, no improvement was achieved in SCNT using in vivo-matured oocytes. In conclusion, the type of donor somatic cell is important for improving development after porcine SCNT, and fetal fibroblasts were the most effective among examined cells. A system with good reproducibility has been established using fetal fibroblasts as the donor karyoplast after subculturing 1-10 times, and using both in vivo and in vitro-matured oocytes as the recipient cytoplast.  相似文献   

3.
Since the only viable cloned offspring born in dogs was a male, the purpose of the present study was to produce female puppies by somatic cell nuclear transfer (SCNT). Adult ear fibroblasts from a 2-month-old female Afghan hound were isolated and used as donor cells. In vivo-matured canine oocytes surgically collected (approximately 72h after ovulation) from the oviducts of 23 donors were used for SCNT. After removal of the cumulus cells, oocytes were enucleated, microinjected, fused with a donor cell, and activated. A total of 167 reconstructed SCNT embryos were surgically transferred (Day 0) into the oviducts of 12 recipient bitches (average 13.9 embryos/recipient, range 6-22) with spontaneous, synchronous estrous cycles. Three pregnancies were detected by ultrasonography on Day 23, maintained to term, and three healthy female puppies (520, 460, and 520g), were delivered by Caesarean section on Day 60. These puppies were phenotypically and genotypically identical to the cell donor. In conclusion, we have provided the first demonstration that female dogs can be produced by nuclear transfer of ear fibroblasts into enucleated canine oocytes.  相似文献   

4.
萨能奶山羊是著名的奶用山羊品种,波尔山羊则是世界著名的肉用山羊品种。为了研究波尔山羊体细胞在奶山羊卵母细胞中的去分化,我们针成年波尔山羊的颗粒细胞或耳皮肤成纤维细胞作为供核细胞(试验组),移入奶山羊中Ⅱ期的去核卵母细胞透明带下,经电融合和离子霉素与6-二甲基氨基嘌呤-DMAP)激活,直接移入同期发情奶山羊输卵管或经体内培养,将发育的重构胚移入同期发情羊子宫内。妊娠早期作B超诊断,确立妊娠的观察至足月。同时将奶山羊的35日龄胎儿成纤维细胞作供核细胞(对照组),按试验组同样方法处理,将重构胚直接移入同期发情的奶山羊输卵管内。结果:试验组,波尔羊颗粒粒细胞与耳皮肤成纤维2细胞的融合率分别为78.2%(115/147),57.4%(116/202),重构胚卵裂率为85.8%(115/134),桑椹胚,囊胚的发育率38.8%(52/134),早期妊娠三头,分别于妊娠40,60,60日龄终止妊娠。对照组,融合率为89.5%(136/152),早期妊娠率为42.9%(6/14),四头受体足月分娩,产四头公羊羔,其中三头存活,一头分娩时死于肺不扩张,并体重过大,显示胎儿过大综合症。经基因型鉴定证实,这四头克隆羔羊均源于同一胎儿成纤维细胞系。以上结果表明,波尔羊体细胞核在奶山羊卵母细胞中能够去分化,并维持一定程度的发育。  相似文献   

5.
人-山羊异种核移植胚胎发育的初步研究   总被引:2,自引:0,他引:2  
以体外分离培养的人胚胎成纤维细胞为核供体,经血清饥饿培养后,通过显微操作技术移入山羊去核卵母细胞中,采用化学方法激活重组胚.通过体外培养观察,2-细胞胚胎发育率可达51.33%,4-细胞发育率为31.42%,但发育至桑椹胚阶段的胚胎数目大大减少,仅为9.73%.虽然目前尚未能获得异种核移植囊胚,但实验结果说明山羊成熟卵母细胞可以支持人体细胞核完成重编程,人-山羊异种体细胞核移植重组胚可在体外完成其早期发育.  相似文献   

6.
This study investigated the effects of different incubation periods for oocyte maturation and contact inhibition of donor cells as well as different osmolarities for storage of recipient oocytes on fusion rates, cleavage rates, and blastocyst yields of porcine somatic nuclear transfer (SCNT) derived embryos. In addition, the in vivo developmental potential of cloned embryos derived from the most promising SCNT protocol was tested by transfer to recipient gilts. Storage of in vitro-matured oocytes for 7.5 h in calcium-free TL-HEPES medium at 295 or 320 mOsmol prior to activation yielded significantly (p < 0.05) higher parthenogenetic blastocyst rates compared to storage in TL-HEPES with an osmolarity of 270 mOsmol (24.4 +/- 3.0% and 26.2 +/- 4.3% vs. 18.3 +/- 6.4%, respectively, mean +/- SD) and improved the visibility of the polar body. Electrical fusion of fibroblasts to enucleated oocytes matured for 38, 40, or 42 h resulted in similar fusion and cleavage rates (74.8-84.4%). However, nuclear transfer with oocytes matured for 40 h in vitro yielded significantly higher (p < 0.05) development to the blastocyst stage after 7 days of culture (14.7 +/- 1.7%) than with oocytes matured for 38 h (9.5 +/- 2.1%) or 42 h (5.1 +/- 2.1%). Contact inhibition for 24, 48, or 72 h significantly (p < 0.05) increased the proportion of cells at G0/G1 compared with cycling fibroblasts. However, duration of contact inhibition of the donor cells for either 24, 48, or 72 h had no effect on blastocyst rates of SCNT embryos. Four gilts received an average of 150 SCNT embryos (range 138-161) reconstructed with oocytes matured for 40 h; two of these became pregnant; one of them went to term and farrowed four piglets on day 115 of pregnancy. Microsatellite analysis confirmed that the clones were genetically identical with the donor cells. These results show that changes of the in vitro maturation protocol may affect in vitro development of reconstructed porcine embryos, while duration of the contact inhibition period plays a minor role for the success of porcine SCNT. The effects on in vivo development are yet to be determined.  相似文献   

7.
萨能奶山羊是著名的奶用山羊品种,波尔山羊则是世界著名的肉用山羊品种.为了研究波尔山羊体细胞在奶山羊卵母细胞中的去分化,我们将成年波尔山羊的颗粒细胞或耳皮肤成纤维细胞作为供核细胞(试验组),移入奶山羊中Ⅱ期的去核卵母细胞透明带下,经电融合和离子霉素与6-二甲基氨基嘌呤(6-DMAP)激活,直接移入同期发情奶山羊输卵管或经体内培养,将发育的重构胚移人同期发情羊子宫内.妊娠早期作B超诊断,确立妊娠的观察至足月.同时将奶山羊的35日龄胎儿成纤维细胞作供核细胞(对照组),按试验组同样方法处理,将重构胚直接移入同期发情的奶山羊输卵管内.结果试验组,波尔羊颗粒粒细胞与耳皮肤成纤维细胞的融合率分别为78.2%(115/147)、57.4%(116/202),重构胚卵裂率为85.8%(115/134),桑椹胚、囊胚的发育率38.8%(52/134),早期妊娠三头,分别于妊娠40、60、60日龄终止妊娠.对照组,融合率为89.5%(136/152),早期妊娠率为42.9%(6/14),四头受体足月分娩,产四头公羊羔,其中三头存活,一头分娩时死于肺不扩张,并体重过大,显示胎儿过大综合症.经基因型鉴定证实,这四头克隆羔羊均源于同一胎儿成纤维细胞系.以上结果表明,波尔羊体细胞核在奶山羊卵母细胞中能够去分化,并维持一定程度的发育.  相似文献   

8.
Hyun S  Lee G  Kim D  Kim H  Lee S  Nam D  Jeong Y  Kim S  Yeom S  Kang S  Han J  Lee B  Hwang W 《Biology of reproduction》2003,69(3):1060-1068
A system for somatic cell nuclear transfer (SCNT) was developed and led to the successful production of GFP-transfected piglets. In experiment 1, two groups of SCNT couplets reconstructed with porcine fetal fibroblasts (PFF) and enucleated sow (S) or gilt oocytes (G): 1). received a simultaneous electrical fusion/activation (S-EFA or G-EFA groups), or 2). were electrically fused followed by activation with ionomycin (S-EFIA or G-EFIA groups), or 3). were subjected to electrical fusion and subsequent activation by ionomycin, followed by 6-dimethylaminopurine treatment (S-EFIAD or G-EFIAD groups). The frequency of blastocyst formation was significantly higher in S-EFA (26%) compared with that observed in the other experimental groups (P < 0.05), but not with S-EFIA (23%). Sow oocytes yielded significantly higher cleavage frequencies (68%-69%) and total cell numbers of blastocysts when compared with gilt oocytes, regardless of fusion/activation methods (P < 0.05). However, the ratio of inner cell mass (ICM)/total cells in G-EFA and S-EFA was significantly lower than in the other groups (P < 0.05). In experiment 2, SCNT couplets reconstructed with PFF cultured in the presence or absence of serum and enucleated sow oocytes were subjected to EFA. There were no effects of serum starvation on cell-cycle synchronization, developmental competence, total cell numbers, and ratio of ICM/total cells. In experiment 3, SCNT couplets reconstructed with PFF transfected with an enhanced green fluorescence protein (EGFP) gene using FuGENE-6 and enucleated sow oocytes were subjected to EFA and cultured for 7 days. Expression frequencies of GFP gene during development were 100%, 78%, 72%, 71%, and 70% in fused, two-cell, four to eight cells, morulae, and blastocysts, respectively. In experiment 4, SCNT embryos derived from different recipient cytoplasts (sows or gilts) and donor karyoplasts (PFF or GFP-transfected) were subjected to EFA and transferred to the oviducts of surrogates. The pregnancy rates in SCNT embryos derived from sow oocytes (66%-69%) were higher than those with gilt oocytes (23%-27%) regardless of donor cell types. One live offspring from GFP-SCNT embryos and two from PFF-SCNT embryos were delivered. Microsatellite analysis confirmed that the clones were genetically identical to the donor cells and polymerase chain reaction (PCR) from genomic DNA of cloned piglets and subsequent southern blot analysis confirmed the integration of EGFP gene into chromosomes.  相似文献   

9.
Jang G  Park ES  Cho JK  Bhuiyan MM  Lee BC  Kang SK  Hwang WS 《Theriogenology》2004,62(3-4):512-521
This study was performed to investigate whether types and/or age of donor cells affect preimplantational embryo development and the incidence of apoptosis in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine fetal or adult ear fibroblasts were isolated, cultured in vitro and categorized into fresh or long-term cultured cells in terms of population doublings (PD): in fetal fibroblasts, <16 being considered fresh and >50 being long-term cultured; in adult ear fibroblasts, <16 being considered fresh and >30 being long-term cultured. Bovine oocytes from slaughterhouse ovaries were matured in TCM-199, enucleated and reconstructed by SCNT. The reconstructed oocytes were fused, chemically activated, and cultured in modified synthetic oviduct fluid (mSOF) at 39 degrees C in a humidified atmosphere of 5% CO(2) air for 7 days. The early development of SCNT embryos was monitored under a microscope and the quality of blastocysts was assessed by differential counting of inner cell mass (ICM) and trophectoderm (TE) cells and by apoptosis detection in blastomeres using a terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. As results, types and/or age of donor cells did not affect the rate of blastocyst formation and the number of ICM and TE cells. However, a significant increase in apoptotic blastomeres was observed in SCNT embryos reconstructed with long-term cultured fetal or adult ear fibroblasts compared to those in SCNT embryos derived from fresh fetal or adult ear fibroblasts. In conclusion, these results indicated that the long-term culture of donor cells caused increased the incidence of apoptosis in bovine SCNT embryos but did not affect the developmental competence and the cell number of blastocysts.  相似文献   

10.
Oocyte maturation and somatic cell nuclear transfer (NT) studies conducted in the domestic cat can provide valuable insights that are relevant to the conservation of endangered species of felids. The present investigation focuses on the in vitro maturation (IVM) of domestic cat oocytes stimulated by insulin-like growth factor-I (IGF-I) and their possible use as recipient cytoplasts for somatic cell NT. In Experiment I, the effects of IGF-I on cat oocyte IVM were monitored. Cumulus-oocyte complexes (COCs) were recovered in TALP-HEPES medium following ovarian follicular aspiration and were classified under a stereomicroscope into four grades using criteria based on cumulus cell investment and the uniformity of ooplasm. The COCs were either cultured in Dulbecco's modified Eagle medium (DMEM) alone as a control group or supplemented with 100 ng/ml IGF-I. After culturing for 32-34 h, oocytes were denuded and maturation rate was evaluated by observing the extrusion of the first polar body and staining with aceto-orcein. The percentages of maturation of Grades 1 and 2 oocytes were significantly increased (P<0.05) in IGF-I supplemented medium compared with medium alone (85.8 versus 65.5 and 70.3 versus 51.8, respectively) whereas the maturation rates of Grades 3 and 4 oocytes were not different. The IVM of Grade 1 oocytes was significantly higher (P<0.05) than for all other grades in both control and experimental groups. In Experiment II, the in vitro development of cat NT embryos using cumulus cells, fetal or adult fibroblasts as donor nuclei was investigated. The IVM oocytes in medium containing IGF-I were enucleated and fused with cumulus cells, fetal or adult fibroblasts between passages 2 and 4 of culture. Reconstructed embryos were cultured and monitored every 24h for progression of development through Day 9. There was no significant difference in the percentage of fusion of NT embryos using different donor nuclei whereas the cleavage rates of NT embryos reconstructed with fetal fibroblasts and cumulus cells were significantly higher (P<0.05) than those reconstructed with adult fibroblasts (72.5 and 70.7% versus 54.8%, respectively). Development of NT embryos reconstructed with adult fibroblast to the morula stage was significantly lower (P<0.05) compared with cumulus cell or fetal fibroblast donor cells (25.8% versus 37.9 or 47.5%, respectively). However, no difference was observed in development to the blastocyst stage. These results demonstrated that IGF-I promoted the IVM of domestic cat oocytes. The enucleated IVM oocytes could be used as recipient cytoplasm for fetal and adult somatic cell nuclei resulting in the production of cloned cat embryos.  相似文献   

11.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

12.
Uhm SJ  Chung HM  Kim C  Shim H  Kim NH  Lee HT  Chung KS 《Theriogenology》2000,54(4):559-570
In the pig little information is available on cytoplasmic events during the reprogramming of oocytes reconstructed with somatic nuclei. The present study was conducted to determine the developmental potential of porcine cumulus cells (CC) and fetal fibroblasts (FF) after they were transferred into enucleated oocytes. Non-quiescent FF were fused to the enucleated oocytes using electrical pulse, whereas CC were directly injected into the oocytes. Transferred nuclei from both CC and FF underwent premature chromosome condensation (PCC), nuclear swelling and pronucleus formation. The remodeled oocytes developed to the mitotic and 2-cell stage at 18 to 24 h after nuclear transfer. The pattern of nuclear remodeling was similar regardless of the sources of karyoplasts or nuclear transfer methods. However, using FF, 24% of nuclear transferred embryos developed to the morula or blastocyst stage, whereas only 8% of those using CC developed to the morula or blastocyst stage. These results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of nuclear transferred embryos to the blastocyst stage.  相似文献   

13.
Intergeneric embryos were constructed by nuclear transfer using Mountain Bongo antelope somatic cells fused with enucleated bovine oocytes and their subsequent development in vitro was investigated. After two to six passages, starved or non-starved skin fibroblast cells were used as donor nuclei. In vitro matured bovine oocytes were enucleated by squeezing the first polar body and surrounding cytoplasm through a slit in the zona pellucida. After injection of a somatic cell into the perivitelline space, couplets were fused electrically and activated chemically, then subjected to different embryo culture treatments. Serum starvation had no effect on the frequency of cleavage to two cells or on development to the blastocyst stage in either sequential hamster embryo culture medium (HECM)-6/TCM-199 + serum or HECM-9/TC-199 + serum, or modified synthetic oviduct fluid (mSOF) culture medium. When couplets from non-starved donor nuclei were cultured, the frequency of cleavage (66 +/- 8% vs. 44 +/- 5%), development to >/=9 cells (46 +/- 6% vs. 24 +/- 4%), and formation of blastocysts (24 +/- 5% vs. 11 +/- 2%) were all significantly higher (p < 0.05) in the HECM-6 medium than in mSOF medium. In conclusion, bovine oocytes can support blastocyst development after intergeneric fusion with bongo fibroblasts. This technique could potentially be used as an alternative to using scarce bongo oocytes in attempts to propagate these endangered animals.  相似文献   

14.
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.  相似文献   

15.
Interspecies nuclear transfer is an invalulable tool for studying nucleus-cytoplasm interactions; and at the same time, it provides a possible alternative to clone endangered animals whose oocytes are difficult to obtain. In the present study, we investigated the possibility of cloning Tibetan antelope embryos using abattoir-derived caprine oocytes as recipients. Effects of culture conditions, enucleation timing, and donor cell passages on the in vitro development of Tibetan antelope-goat cloned embryos were studied. Maternal to zygotic transition timing of interspecies Tibetan antelope embryos was also investigated using two types of cloned embryos, Tibetan antelope-rabbit and Tibetan antelope-goat embryos. Our results indicate that: (1) goat oocyte is able to reprogram somatic cells of different genus and supports development to blastocyst in vitro. (2) Coculture system supported the development of Tibetan antelope-goat embryos to blastocyst rate stage (4.0%), while CR1aa alone did not. (3) When MII phase enucleated caprine cytoplast and TII phase enucleated caprine cytoplast were used as recipients, the fusion rate and blastocyst rate of hybrid embryos were not statistically different (73.9% vs. 67.4%; 4.0% vs. 1.1%). (4) When donor cells at 3-8 passages were used, 2.9% hybrid embryos developed to blastocysts, while none developed to blastocysts when cells at 10-17 passages were used. (5) There may be a morula-to-blastocyst block for Tibetan antelope-goat, while there may be an 8- to 16-cell block for Tibetan antelope-rabbit embryos.  相似文献   

16.
Interspecies nuclear transfer (INT) has been used as an invaluable tool for studying nucleus-cytoplasm interactions; and it may also be a method for rescuing endangered species whose oocytes are difficult to obtain. In the present study, we investigated interaction of the chicken genome with the rabbit oocyte cytoplasm. When chicken blastodermal cells were transferred into the perivitelline space of rabbit oocytes, 79.3% of the couplets were fused and 9.7% of the fused embryos developed to the blastocyst stage. Both M199 and SOF medium were used for culturing chicken-rabbit cloned embryos; embryo development was arrested at the 8-cell stage obtained in SOF medium, while the rates of morulae and blastocysts were 12.1 and 9.7%, respectively, in M199 medium. Polymerase chain reaction (PCR) amplification of nuclear DNA and karyotype analyses confirmed that genetic material of morulae and blastocysts was derived from the chicken donor cells. Analysis mitochondrial constitution of the chicken-rabbit cloned embryos found that mitochondria, from both donor cells and enucleated oocytes, co-existed. Our results suggest that: (1) chicken genome can coordinate with rabbit oocyte cytoplasm in early embryo development; (2) there may be an 8- to 16-cell stage block for the chicken-rabbit cloned embryos when cultured in vitro; (3) mitochondrial DNA from the chicken donor cells was not eliminated until the blastocyst stage in the chicken-rabbit cloned embryos; (4) factors existing in ooplasm for somatic nucleus reprogramming may be highly conservative.  相似文献   

17.
18.
In this study, two enucleation methods, the squeezing and the aspiration methods, were compared. The efficiency of these two methods to enucleate pig oocytes and the in vitro and in vivo viability of somatic cell nuclear transfer (SCNT) pig embryos, were evaluated. In the squeezing method, the zona pellucida was partially dissected and a small amount of cytoplasm containing metaphase II (MII) chromosomes and the first polar body (PB) were pushed out. In the aspiration method, the PB and MII chromosomes were aspirated using a beveled micropipette. After injection of fetal fibroblasts into the perivitelline space, reconstructed oocytes were fused and activated electrically, and then cultured in vitro for 6 days or transferred to surrogates. The squeezing method resulted in a higher proportion of degenerated oocytes than the aspiration method (14% vs. 5%). The squeezing method took longer to enucleate 100 oocytes (306 minutes) than the aspirating method (113 minutes). Fusion rate (72-78%) and cleavage rate (67%) were not influenced by the enucleation method but blastocyst formation was improved (P < 0.05) in oocytes enucleated by the aspiration method (5 vs. 9%). When SCNT embryos were transferred to recipients, pregnancy rates to term were similar (27%, 3/11 and 27%, 3/11) in both methods with the birth of 10 piglets/3 litters and 16 piglets/3 litters in the squeezing and the aspiration methods, respectively. Our results indicate that the aspiration method for oocyte enucleation is more efficient than the squeezing method in producing a large number of pig SCNT embryos with normal in vivo viability.  相似文献   

19.
Yin XJ  Lee HS  Yu XF  Kim LH  Shin HD  Cho SJ  Choi EG  Kong IK 《Theriogenology》2008,69(8):1001-1006
We successfully produced second-generation cloned cats by somatic cell nuclear transfer (SCNT) using skin cells from a cloned cat. Skin cells from an odd-eyed, all-white male cat (G0 donor cat) were used to generate a cloned cat (G1 cloned cat). At 6 months of age, skin cells from the G1 cloned cat were used for SCNT to produce second-generation cloned cats. We compared the in vitro and in vivo development of SCNT embryos that were derived from the G0 donor and G1 cloned donor cat's skin fibroblasts. The nuclei from the G0 donor and G1 cloned donor cat's skin fibroblasts fused with enucleated oocytes with equal rates of fusion (60.7% vs. 58.8%, respectively) and cleavage (66.3% vs. 63.4%). The 2-4-cell SCNT embryos were then transferred into recipients. One of the five recipients of G0 donor derived NT embryos (20%) delivered one live male cloned kitten, whereas 4 of 15 recipients of the G1 cloned donor cat derived NT embryos (26%) delivered a total of seven male second-generation cloned kittens (four live kittens from one surrogate, plus two stillborn kittens, and one live kitten that died 2d after birth from three other surrogate mothers). The four second-generation cloned kittens from the same surrogate all had a white coat color; three of the four second-generation cloned kittens had two blue eyes, and one of the second-generation cloned kittens had an odd-eye color. Despite low cloning efficiency, cloned cats can be used as donor cats to produce second-generation cloned cats.  相似文献   

20.
In this study, two enucleation methods, the squeezing and the aspiration methods, were compared. The efficiency of these two methods to enucleate pig oocytes and the in vitro and in vivo viability of somatic cell nuclear transfer (SCNT) pig embryos, were evaluated. In the squeezing method, the zona pellucida was partially dissected and a small amount of cytoplasm containing metaphase II (MII) chromosomes and the first polar body (PB) were pushed out. In the aspiration method, the PB and MII chromosomes were aspirated using a beveled micropipette. After injection of fetal fibroblasts into the perivitelline space, reconstructed oocytes were fused and activated electrically, and then cultured in vitro for 6 days or transferred to surrogates. The squeezing method resulted in a higher proportion of degenerated oocytes than the aspiration method (14% vs. 5%). The squeezing method took longer to enucleate 100 oocytes (306 minutes) than the aspirating method (113 minutes). Fusion rate (72–78%) and cleavage rate (67%) were not influenced by the enucleation method but blastocyst formation was improved (P < 0.05) in oocytes enucleated by the aspiration method (5 vs. 9%). When SCNT embryos were transferred to recipients, pregnancy rates to term were similar (27%, 3/11 and 27%, 3/11) in both methods with the birth of 10 piglets/3 litters and 16 piglets/3 litters in the squeezing and the aspiration methods, respectively. Our results indicate that the aspiration method for oocyte enucleation is more efficient than the squeezing method in producing a large number of pig SCNT embryos with normal in vivo viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号