首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

2.
Somatic cell nuclear transfer (SCNT), combined with genome modification techniques, is a very pow-erful tool for agriculture, medicine and fundamental research on basic biological mechanisms. The effi-ciency of producing transgenic animals is greatly prom…  相似文献   

3.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

4.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (47.5% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36 to 42 h (83.6% vs. 96.7%, p<0.05). However, no statistical difference was observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.3%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

5.
Effects of different activation methods on the cleavage and in vitro development of bovine somatic cloned embryos constructed by intracytoplasmic nuclear injection were compared. The results show that the cleavage and in vitro development rate were not different significantly for constructed embryos cultured in 6-DMAP comparing with those in 6-DMAP + cytochalasin B (CCB) after activation with Ionomycin. Culture duration (3 to 4 h) in 6-DMAP or 6-DMAP + CCB had no significant effects on the cleavage and in vitro development ability of reconstructed embryos. CCB addition in the activation medium was benefit to the development of constructed embryos, although the effect wasn't significant. Within 1 to 4 h, the longer interval duration of nuclear injection and reconstructed embryo activation was, the higher cleavage and the blastocyst development rate of reconstructed embryos were.  相似文献   

6.
The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs. Three different activation methods were used: (i) Electroporation (Ele); (ii) Ele followed by incubation with 6-dimethylaminopurine (6-DMAP); and (iii) Ele followed by a treatment with cycloheximide (CHX). In experiment 1, the rates of cleavage, developmental rates and cell number of porcine parthenogenetic (PA) embryos were investigated in the three treatment groups. In experiment 2, NT embryos produced by the three different activation treatments were compared for the rates of cleavage, development and cell number. Finally, the effects of Ele and Ele+CHX activation methods on birth efficiency of cloned pigs were compared. The activated oocytes treated by combination activation generally showed a higher (P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele. The rates of cleavage and total cell number of parthenotes were not significantly different. Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blastocyst stages at a significantly (P<0.05) higher rate than those treated with Ele, but the developmental capability was dramatically decreased in NT embryos. With the CHX activation method, the NT embryo blastocyst rate was substantially (P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods. The birth rate of cloned pigs increased in the CHX group, though the rate was not significantly different from Ele. The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study. Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter. However, no difference in birth rate of the cloned pigs was found between the oocytes collected in the two seasons. The results obtained from PA and NT embryos, following different activation methods, were inconsistent, suggesting that activation mechanisms are dissimilar in PA and NT embryos. Although the chemical activation in our study leads to an elevation of the blastocyst rate, it does not improve the oocyte’s molecular programming and so does not significantly improve the efficiency of producing cloned pig births. Supported by National Key Basic Research and Development Program (China of Grant No. G200000161).  相似文献   

7.
哺乳动物体细胞核移植在家畜品种改良、濒危珍稀动物保护以及生物学、医学等基础科学研究和应用中越来越显示出其重要的作用。自Wilmut等首次用成年动物体细胞作供体,获得第一只成年体细胞克隆绵羊“Dolly”以来,世界各国科学家进行了大量深入的研究,已在小鼠、牛、猪、山羊等家畜上获得了成功。而且,体细胞核移植技  相似文献   

8.
The aim of this study was to investigate the effect of electrical pulse, ethanol, and ionomycin combined with cycloheximide (CHX), cytochalasin B (CB), and 6-dimethylaminopurine (6-DMAP) on parthenogenetic developmental competence of in vitro matured porcine oocytes. In experiment 1, oocytes were treated with direct current electrical pulse (DC pulse) and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX, and CB + 6-DMAP for 6 h, respectively. The rate of blastocyst development in DC pulse + CB + 6-DMAP group was significantly higher than those in other groups (42.4% vs 23.9% ~ 35.8%; P < 0.05); however, there were no differences in both of the cleavage rate and the cell number of blastocysts among four groups. In experiment 2, oocytes were treated with NCSU-23 medium containing 20 μM ionomycin for 40 min and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX and CB + 6-DMAP for 6 h, respectively. The rates of cleavage and blastocyst development in ionomycin + 6-DMAP group were higher than those obtained in other groups (66.2% vs 46.3% ~ 57.3%; 22.3% vs 7.4% ~ 16.1%; P < 0.05). In experiment 3, the activation effects of ethanol combined with 6-DMAP, CHX, CB + 6-DMAP and CB + CHX were investigated. The rates of cleavage and blastocyst development in ethanol + CB + 6-DMAP group were significantly higher than those in other groups (55.5% vs 42% ~ 46.2%; 18.0% vs 7.1% ~ 11.9%; P < 0.05). In experiment 4, the optimal activation protocols in each group plus DC pulse + ionomycin + 6-DMAP were compared. The results showed the rates of cleavage in DC pulse + CB + 6-DMAP group and ionomycin + 6-DMAP were higher than those in ethanol + CB + 6-DMAP and DC pulse + ionomycin + 6-DMAP (73.8–74.4% vs 56.5–57.5%; P < 0.05), but the blastocyst development only in DC pulse + CB + 6-DMAP group was significantly higher than that in other groups (34.1% vs 13.4% ~ 22.3%; P < 0.05). Total cell number of blastocysts in the group of DC pulse + ionomycin + 6-DMAP was higher than that in other groups (34.1 vs 25.3–27.2; P < 0.05). In conclusion, DC pulse, ethanol, CB, and 6-DMAP all affected the parthenogenesis of porcine oocytes matured in vitro, but their combination of DC pulse + CB + 6-DMAP showed the best result in both of cleavage and blastocyst development.  相似文献   

9.
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.  相似文献   

10.
Porcine transgenic cloning has potential applications for improving production traits and for biomedical research purposes. To produce a transgenic clone, kidney fibroblasts from a newborn Guangxi Bama mini-pig were isolated, cultured, and then transfected with red and green fluorescent protein genes using lipofectamine for nuclear transfer. The results of the present study show that the kidney fibroblasts exhibited excellent proliferative capacity and clone-like morphology, and were adequate for generation of somatic cell nuclear transfer (SCNT)-derived embryos, which was confirmed by their cleavage activity and blastocyst formation rate of 70.3% and 7.9%, respectively. Cells transfected with red fluorescent protein genes could be passed more than 35 times. Transgenic embryos cloned with fluorescent or blind enucleation methods were not significantly different with respect to cleavage rates (92.5% vs. 86.8%, p?>?0.05) and blastocyst-morula rates (26.9% vs. 34.0%, p?>?0.05), but were significantly different with respect to blastocyst rates (3.0% vs. 13.2%, p?p?>?0.05), blastocyst (14.1%, 16.1% vs. 23.1%, p?>?0.05) and morula/blastocyst rates (43.5%, 47.0% vs. 57.6%, p?>?0.05) were not significantly different between the groups of transgenic cloned embryos, cloned embryos, and parthenogenetic embryos. This indicates that long-time screening by G418 caused no significant damage to kidney fibroblasts. Thus, kidney fibroblasts represent a promising new source for transgenic SCNT, and this work lays the foundation for the production of genetically transformed cloned Guangxi Bama mini-pigs.  相似文献   

11.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

12.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

13.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

14.
As an important step in the nuclear transfer (NT) procedure, we evaluated the effect of three different treatments for oocyte activation on the in vitro and in vivo developmental capacity of bovine reconstructed embryos: (1) strontium, which has been successfully used in mice but not yet tested in cattle; (2) ionomycin and 6-dimethylaminopurine (6-DMAP), a standard treatment used in cattle; (3) ionomycin and strontium, in place of 6-DMAP. As regards NT blastocyst development, no difference was observed when strontium (20.1%) or ionomycin/6-DMAP (14.4%) were used. However, when 6-DMAP was substituted by strontium (3), the blastocyst rate (34.8%) was superior to that in the other activation groups (p < 0.05). Results of in vivo development showed the possibility of pregnancies when NT embryos activated in strontium were transferred to recipient cows (16.6%). A live female calf was obtained when ionomycin/strontium were used, but it died 30 days after birth. Our findings show that strontium can be used as an activation agent in bovine cloning procedures and that activation with a combination of strontium and ionomycin increased the in vitro developmental capacity of reconstructed embryos. This is the first report of a calf produced by adult somatic cell NT in Latin America.  相似文献   

15.
This study determined the effects of postactivation treatment with demecolcine and/or 6-dimethylaminopurine (6-DMAP) on in vivo and in vitro developmental competence of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were treated for 4 hours with 0.4?µg/mL demecolcine, 2?mM 6-DMAP, or both after electric activation, then transferred to surrogate pigs or cultured for 7 days. The formation rate of SCNT embryos with a single pronucleus was higher in combined treatment with demecolcine and 6-DMAP (95.2%) than treatment with demecolcine alone (87.1%). Blastocyst formation of SCNT embryos was significantly increased in combined treatment with demecolcine and 6-DMAP (48.7%) compared with demecolcine (22.2%) or 6-DMAP alone (37.3%). Fluctuation of maturation promoting factor activity showed different patterns among various postactivation treatments. Pregnancy was established in 1 of 5 surrogates after transfer of SCNT embryos that were treated with demecolcine and 6-DMAP. The pregnant surrogate delivered one healthy live piglet. The results of our study demonstrated that postactivation treatment with demecolcine and 6-DMAP together improved preimplantation development and supported normal in vivo development of SCNT pig embryos, probably influencing MPF activity and nuclear remodeling, including induction of single pronucleus formation after electric activation.  相似文献   

16.
In human in vitro fertilization (I.V.F.), it was first assumed that all the embryos obtained had the same developmental potential whatever the quality of sperm. However, this has not been confirmed. We have used the coculture technique and determined the blastocyst formation rate in three groups of patients: group 1: patients with normal sperm count (>20 × 106/ml), motility (>30%), and morphology (>50%); group 2: patients treated by I.V.F. with frozen donor sperm; group 3: patients with severely impaired sperm quality (<3 × 106 forward motile and morphologically normal spermatozoa per ml). In group 1, we found a strong correlation between cleavage rate and blastocyst formation rate (P < 0.0001) with a blastocyst formation rate comprised between 40% and 50%. This was not true for the two other groups for which the overall number of blastocysts obtained and the number of patients having at least one blastocyst were severely reduced (P < 0.0001). These data are discussed in terms of DNA quality, timing of formation of the pronuclei, and delays in cell cycles at the time of genomic activation. These observations lead to a new approach to the study of fertilizing ability of poor quality sperm. It may help in the decision as to whether couples treated for male infertility should be excluded from I.V.F. protocols. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Cheng WM  Sun XL  An L  Zhu SE  Li XH  Li Y  Tian JH 《Animal biotechnology》2007,18(2):131-141
The aim of this study was to investigate the effect of electrical pulse, ethanol, and ionomycin combined with cycloheximide (CHX), cytochalasin B (CB), and 6-dimethylaminopurine (6-DMAP) on parthenogenetic developmental competence of in vitro matured porcine oocytes. In experiment 1, oocytes were treated with direct current electrical pulse (DC pulse) and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX, and CB + 6-DMAP for 6 h, respectively. The rate of blastocyst development in DC pulse + CB + 6-DMAP group was significantly higher than those in other groups (42.4% vs 23.9% approximately 35.8%; P < 0.05); however, there were no differences in both of the cleavage rate and the cell number of blastocysts among four groups. In experiment 2, oocytes were treated with NCSU-23 medium containing 20 muM ionomycin for 40 min and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX and CB + 6-DMAP for 6 h, respectively. The rates of cleavage and blastocyst development in ionomycin + 6-DMAP group were higher than those obtained in other groups (66.2% vs 46.3% approximately 57.3%; 22.3% vs 7.4% approximately 16.1%; P < 0.05). In experiment 3, the activation effects of ethanol combined with 6-DMAP, CHX, CB + 6-DMAP and CB + CHX were investigated. The rates of cleavage and blastocyst development in ethanol + CB + 6-DMAP group were significantly higher than those in other groups (55.5% vs 42% approximately 46.2%; 18.0% vs 7.1% approximately 11.9%; P < 0.05). In experiment 4, the optimal activation protocols in each group plus DC pulse + ionomycin + 6-DMAP were compared. The results showed the rates of cleavage in DC pulse + CB + 6-DMAP group and ionomycin + 6-DMAP were higher than those in ethanol + CB + 6-DMAP and DC pulse + ionomycin + 6-DMAP (73.8-74.4% vs 56.5-57.5%; P < 0.05), but the blastocyst development only in DC pulse + CB + 6-DMAP group was significantly higher than that in other groups (34.1% vs 13.4% approximately 22.3%; P < 0.05). Total cell number of blastocysts in the group of DC pulse + ionomycin + 6-DMAP was higher than that in other groups (34.1 vs 25.3-27.2; P < 0.05). In conclusion, DC pulse, ethanol, CB, and 6-DMAP all affected the parthenogenesis of porcine oocytes matured in vitro, but their combination of DC pulse + CB + 6-DMAP showed the best result in both of cleavage and blastocyst development.  相似文献   

18.
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.  相似文献   

19.
The efficiency of two cell types, namely adult fibroblasts, and amniotic fluid stem (AFS) cells as nuclear donor cells for somatic cell nuclear transfer by hand-made cloning in buffalo (Bubalus bubalis) was compared. The in vitro expanded buffalo adult fibroblast cells showed a typical “S” shape growth curve with a doubling time of 40.8 h and stained positive for vimentin. The in vitro cultured undifferentiated AFS cells showed a doubling time of 33.2 h and stained positive for alkaline phosphatase, these cells were also found positive for undifferentiated embryonic stem cell markers like OCT-4, NANOG and SOX-2, which accentuate their pluripotent property. Further, when AFS cells were exposed to corresponding induction conditions, these cells differentiated into osteogenic, adipogenic and chondrogenic lineages which was confirmed through alizaran, oil red O and alcian blue staining, respectively. Cultured adult fibroblasts and AFS cells of passages 10–15 and 8–12, respectively, were used as nuclear donors. A total of 94 embryos were reconstructed using adult fibroblast as donor cells with cleavage and blastocyst production rate of 62.8 ± 1.8 and 19.1 ± 1.5, respectively. An overall cleavage and blastocyst formation rate of 71.1 ± 1.2 and 29.9 ± 2.2 was obtained when 97 embryos were reconstructed using AFS cells as donor cells. There were no significant differences (P > 0.05) in reconstructed efficiency between the cloned embryos derived from two donor cells, whereas the results showed that there were significant differences (P < 0.05) in cleavage and blastocyst rates between the cloned embryos derived from two donor cell groups. Average total cell numbers for blastocyst generated using AFS cells (172.4 ± 5.8) was significantly (P < 0.05) higher than from adult fibroblasts (148.2 ± 6.1). This study suggests that the in vitro developmental potential of the cloned embryos derived from AFS cells were higher than that of the cloned embryos derived from adult fibroblasts in buffalo hand-made cloning.  相似文献   

20.
This study was undertaken to investigate the development of immature oocytes after their fusion with male somatic cells expressing red fluorescence protein (RFP). RFP‐expressing cells were fused with immature oocytes, matured in vitro and then parthenogenetically activated. Somatic nuclei showed spindle formation, 1st polar body extrusion after in vitro maturation and protruded the 2nd polar body after parthenogenetic activation. RFP was expressed in the resultant embryos; two‐cell stage and blastocysts. Chromosomal analysis showed aneuploidy in 81.82% of the resulting blastocysts while 18.18% of the resulting blastocysts were diploid. Among eight RFP‐expressing blastocysts, Xist mRNAs was detected in six while Sry mRNA was detected in only one blastocyst. We propose “prematuration somatic cell fusion” as an approach to generate embryos using somatic cells instead of spermatozoa. The current approach, if improved, would assist production of embryos for couples where the male partner is sterile, however, genetic and chromosomal analysis of the resultant embryos are required before transfer to the mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号