首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
1,6-二磷酸果糖酶(EC3.13.11)催化1,6-二磷酸果糖分解为6-磷酸葡萄糖和无机磷酸。在高等植物的光合作用细胞中,存在两种1,6-二磷酸果糖酶:即叶绿体型1,6-二磷酸果糖酶和细胞质型1,6-二磷酸果糖酶。由于细胞质型1,6-二磷酸果糖酶在植物碳水化合物代谢中起重要作用,且具有表达特异性,本试验通过Genome Walking分离了水解细胞质型1,6-二磷酸果糖酶基因的上游序列,并将其与β-葡糖醛酸酶(GUS)报告基因建成嵌合表达载体。采用基因枪法转化水稻,在转基因水稻中分析了GUS的表达活性和特异性。组织化学检测表明,在转基因水稻的成熟叶片中,GUS基因只在叶肉细胞中表达,在表皮细胞,泡状细胞,维管组织中均无表达,在叶鞘中的表达与叶片中相似,仅仅在叶肉细胞中表达,在根,茎所有细胞中均没有蓝色反应,为进一步研究1,6-二磷酸果糖酶基因启动子在水稻中的表达量,对12株独立来源的转基因水稻的GUS活性进行了荧光定量分析。结果显示,水稻成熟叶片中的GUS活性平均值为7031.5pmol4-MU^-1.min^-1.mg蛋白。在不同器官及组织中表达活性有差异,在转基因水稻的叶片,叶鞘中GUS均有较强的表达,在根、茎中未检测到GUS活性,实验结果表明,ATG上游1195bp调控区足以导致GUS基因在水稻中的特异性表达,因此该片段包含有使报告基因在叶肉细胞中特异性表达的所有顺式调控元件。  相似文献   

2.
为将不同启动子用于转基因水稻的研究,从武运粳8号水稻中克隆了Rubisco小亚基基因(rbcS)的5'上游调控区,构建了由rbcS启动子引导的GUS融合基因,并经农杆菌介导导入到水稻中.对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS启动子可驱动GUS报告基因在转基因水稻植株叶片和叶鞘内的叶肉细胞中特异性高效表达,而在茎、根和种子等器官中不表达或表达活性极弱,表现出明显的组织与细胞特异性.结果还表明,光诱导处理可明显提高rbcS启动子启动的外源基因的表达量.  相似文献   

3.
1,6-二磷酸果糖酶(EC3.13.11)催化1,6-二磷酸果糖分解为6-磷酸葡萄糖和无机磷酸.在高等植物的光合作用细胞中,存在两种1,6-二磷酸果糖酶:即叶绿体型1,6-二磷酸果糖酶和细胞质型1,6-二磷酸果糖酶.由于细胞质型1,6-二磷酸果糖酶在植物碳水化合物代谢中起重要作用,且具有表达特异性,本试验通过Genome Walking分离了水稻细胞质型1,6-二磷酸果糖酶基因的上游序列,并将其与β-葡糖醛酸酶(GUS)报告基因构建成嵌合表达载体.采用基因枪法转化水稻,在转基因水稻中分析了GUS的表达活性和特异性.组织化学检测表明,在转基因水稻的成熟叶片中,GUS基因只在叶肉细胞中表达,在表皮细胞、泡状细胞、维管组织中均无表达;在叶鞘中的表达与叶片中相似,仅仅在叶肉细胞中表达;在根、茎所有细胞中均没有蓝色反应.为进一步研究1,6-二磷酸果糖酶基因启动子在水稻中的表达量,对12株独立来源的转基因水稻的GUS 活性进行了荧光定量分析.结果显示,水稻成熟叶片中的GUS活性平均值为7 031.5 pmol 4-MU-1*min-1*mg蛋白.在不同器官及组织中表达活性有差异,在转基因水稻的叶片、叶鞘中GUS均有较强的表达,在根、茎中未检测到GUS活性.实验结果表明,ATG上游1 195 bp调控区足以导致GUS基因在水稻中的特异性表达,因此该片段包含有使报告基因在叶肉细胞中特异性表达的所有顺式调控元件.  相似文献   

4.
用CaMV35S启动子、玉米Ubil启动子、TMVΩ增强子(Ω序列)以及拟南芥18S rRNA基因同源序列构建的6种GUS基因表达载体分别转化水稻和毛白杨愈伤组织,研究不同调控序列对外源基因表达的调控作用.结果表明:(1)在水稻中,以独立Ubil启动子驱动下的GUS基因表达水平为最高,CaMV35S启动子附加18SrRNA基因同源序列调控下的GUS基因为最低.而在毛白杨中,则呈相反趋势;(2)在水稻中,CaMV35S-Ubil复合启动子的表达活性比独立CaMV35S启动子提高了近1.5倍.而在毛白杨中,前者比后者的低;(3)Ubil启动子附加Ω序列,使GUS基因在毛白杨中的表达水平提高一倍以上.但CaMV35S-Ubil复合启动子附加Ω序列,对GUS基因在毛白杨及水稻愈伤组织中的表达活性均没有明显的增强作用.  相似文献   

5.
内含子是基因的重要组成部分,它与功能基因表达之间的关系越来越被重视.本研究以pCAMBIA3301为载体,利用玉米泛素启动子Ubi1和水稻肌动蛋白启动子Actin1构建两个GUS基因表达载体p33U1和p33A1,同时设置3个对照载体.通过基因枪轰击法将上述载体转入水稻胚性愈伤组织,探讨内含子对外源目的基因表达的调控作用.组织化学检测结果表明:CaMV35S启动子调控下的iGUS (带内含子)基因能够顺利表达;同样,Actin1启动子(带内含子)调控下的不带内含子的GUS基因也可以正常表达,而当Actin1启动子(带内含子)驱动iGUS基因时,则导致GUS染色反应不能发生.Ubi1启动子(带内含子)调控GUS基因的瞬时表达也得出类似结果,证明表达框中内含子的数量为1个或两个时,对GUS基因的表达起到了不同的调控作用.本研究结果对植物表达载体构建及功能基因表达都具有指导意义.  相似文献   

6.
921489单子叶植物LHCp启动子在转基因水稻中的表达〔英〕/Tada,Y.…2 EMBOJ一1991,10(7)一1803~1808〔译自DBA,1991,10(18),91-10498〕 通过电激将与编码水稻(Or夕za夕at苏公a)捕光叶绿素a/b光系统一n(LHCPll)结合蛋白启动子相连的户葡糖昔酸酶(GUS)基因(位于质粒PLHC4.4中)导入水稻。转化原生质体和愈伤培养物中由LHCP启动子控制的GUS基因表达远低于由花椰菜花叶病毒(CaMV)355启动子控制的,而在绿色器官中,LHCP启动子启动的LHCP-GUS活性比CaMV35S启动子启动尸的高10倍。在叶、茎和花组织中检测到LHCP一GUS基因的表…  相似文献   

7.
利用PCR技术从哥伦比亚型拟南芥基因组DNA中分离了AtSTP3绿色组织特异表达的启动子,序列分析表明,扩增片段(1774bp)与已报道序列的相应区域同源性达99.9%。将其与GUS报告基因融合在一起,构建了植物表达载体,并由农杆菌介导法导入水稻品种‘中花11’中。对转基因水稻植株中的GUS活性进行定性与定量测定结果表明,AtSTP3启动子可驱动GUS报告基因在转基因水稻植株叶片中特异性表达,而在根和种子等器官中不表达或表达活性极弱,AtSTP3启动子表现出明显的组织特异性。  相似文献   

8.
以水稻品种‘日本晴’(Oryza sativa‘Nipponbare’)为实验材料,根据GenBank上公布的同品种水稻的基因组DNA序列设计1对引物,对水稻Xa21基因启动子进行克隆并测序,通过PCR扩增获得的Xa21基因启动子序列长1 982 bp,其中除包含启动子基本元件外,还包含一些与逆境信号相关的元件(GCC-box、A-box、TC-rich repeats、MBS、LTR和W-box等)。利用GUS组织化学染色和定量分析方法,研究了转基因水稻T1代株系不同器官和发育阶段Xa21基因启动子的表达特异性及其在不同逆境和激素处理条件下的表达特征,结果显示:在转基因水稻的叶、茎和根部均能检测到GUS活性,但根部GUS活性最高,特别是在根尖的中柱区活性最强;随苗龄增长(3叶期、5叶期和8至9叶期)叶片中GUS活性逐渐增加,8至9叶期GUS活性最高;机械损伤和100μmol.L-1茉莉酸甲酯(MeJA)处理可使叶片中GUS活性显著或极显著提高,而干旱、500μmol.L-1水杨酸(SA)和100μmol.L-1脱落酸(ABA)处理则对叶片中GUS活性无明显影响。研究结果表明:外界逆境胁迫对水稻Xa21基因启动子的表达有诱导作用;该启动子的表达受水稻发育阶段的调控并具有一定的器官组织特异性,在根中的表达量最高;其介导的抗病反应依赖于茉莉酸(JA)信号通路。  相似文献   

9.
水稻(Oryaz sativa L.)基因组中的ADP-葡萄糖焦磷酸化酶小亚基(ADP-Glucose pyrophosphorylase smallsubunit,OsAgpS)由两个基因编码,即OsAgpS1和OsAgpS2.其中OsAgpS1基因产生两个转录本OsAgpS1a和OsAgpS1b,区别在第一个外显子的位置不同.通过RT-PCR方法分析了两个转录本在水稻组织和胚乳不同发育时期的表达特性;同时通过报告基因GUS检测了两个转录本上游转录调节区DNA片段的转录启动特性.结果表明,两个启动了与其下游转录本的表达模式完全一致,即OsAgpS1a转录本和OsAgpS1a 上游启动子控制的GUS基因主要在胚乳中高水平表达,在叶片中有很低水平的表达;而OsAgpS1b转录本和OsAgpS1b上游启动子控制的GUS基因主要在叶片和胚乳发育早期低水平表达.这说明OsAgpS1基因产生的两个转录本是由不同的启动子控制转录的,OsAgpS1a上游启动了可以作为胚乳表达用启动子.  相似文献   

10.
番茄rbcS3A启动子控制的GUS融合基因在转基因水稻中的表达   总被引:1,自引:0,他引:1  
为研究不同启动子用于转基因水稻,克隆了番茄Rubisco小亚基rbcS3A基因的5′上游调控区,构建了由rbcS3A启动子引导的GUS嵌合基因,并经农杆菌介导导入到水稻中。对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS3A启动子可驱动GUS报告基因在转基因水稻植株茎和叶组织中高效表达,而在根和种子等器官中不表达或表达活性极弱,表现出一定的组织特异性。在转基因水稻中,番茄rbcS3A启动子驱动外源基因的表达不受光诱导。  相似文献   

11.
Promoters play key roles in conferring temporal, spatial, chemical, developmental, or environmental regulation of gene expression. Promoters that are subject to specific regulations are useful for manipulating foreign gene expression in plant cells, tissues, or organs with desirable patterns and under controlled conditions, and have been important for both basic research and applications in agriculture biotechnology. Recent advances in genomics technologies have greatly facilitated identification and study of promoters in a genome scale with high efficiency. Previously we have generated a large T-DNA tagged rice mutant library (TRIM), in which the T-DNA was designed with a gene/promoter trap system, by placing a promoter-less GUS gene next to the right border of T-DNA. GUS activity screens of this library offer in situ and in planta identifications and analyses of promoter activities in their native configurations in the rice genome. In the present study, we systematically performed GUS activity screens of the rice mutant library for genes/promoters constitutively, differentially, or specifically active in vegetative and reproductive tissues. More than 8,200 lines have been screened, and 11% and 22% of them displayed GUS staining in vegetative tissues and in flowers, respectively. Among the vegetative tissue active promoters, the ratio of leaf active versus root active is about 1.6. Interestingly, all the flower active promoters are anther active, but with varied activities in different flower tissues. To identify tissue specific ABA/stress up-regulated promoters, we compared microarray data of ABA/stress induced genes with those of tissue-specific expression determined by promoter trap GUS staining. Following this approach, we showed that the peroxidase 1 gene promoter was ABA up-regulated by 4 fold within 1 day of exposure to ABA and its expression is lateral root specific. We suggest that this be an easy bioinformatics approach in identifying tissue/cell type specific promoters that are up-regulated by hormones or other factors. Su-May Yu and Swee-Suak Ko equally contributed to this work.  相似文献   

12.
The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with beta-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity.  相似文献   

13.
水稻(Oryce sativa L.)基因组中的ADP-葡萄糖焦磷酸化酶小亚基(ADP-Glucose pyrophosphorylase small subunit,OsAgpS)由两个基因编码,即OsAgpSl和OsAgpS2。其中OsAgpSl基因产生两个转录本OsAgpSla和OsAgpSlb,区别在第一个外显子的位置不同。通过RT—PCR方法分析了两个转录本在水稻组织和胚乳不同发育时期的表达特性;同时通过报告基因GUS检测了两个转录本上游转录调节区DNA片段的转录启动特性。结果表明,两个启动子与其下游转录本的表达模式完全一致,即OsAgpSla转录本和OsAgpSla上游启动子控制的GUS基因主要在胚乳中高水平表达,在叶片中有很低水平的表达;而OsAgpSlb转录本和OsAgpSlb上游启动子控制的GUS基因主要在叶片和胚乳发育早期低水平表达。这说明OsAgpSl基因产生的两个转录本是由不同的启动子控制转录的,OsAgpSla上游启动子可以作为胚乳表达用启动子。  相似文献   

14.
启动子是基因表达调控的重要顺式元件,也是基因工程表达载体的一个重要元件。一个无启动子的带有UidA基因的质粒pPLGUS通过基因枪转化进tritordeum材料中,对转基因材料的多种不同组织进行了X-gluc显色来检测不同组织中的GUS活性,有一个株系的花药组织特异性启动子已被证明成功捕获,并通过PCR方法将其分离。提取叶片的总DNA作模板,上游使用水稻花药启动子分离的引物P1,以UidA基因的部分序列为下游引物P2,PCR扩增UidA基因的上游旁侧序列。已经获得一条长667 bp的目的片断,含有部分UidA基因的序列和一段UidA基因的上游旁侧序列,该序列中具有植物启动子的一些必备元件,初步断定它是一段花药组织特异性启动子序列。  相似文献   

15.
Ye R  Zhou F  Lin Y 《Plant cell reports》2012,31(7):1159-1172
In plant genetic engineering, using tissue-specific promoters to control the expression of target gene is an effective way to avoid potential negative effects of using constitutive promoter, such as metabolic burden and so on. However, until now, there are few tissue-specific promoters with strong and reliable expression that could be used in crop biotechnology application. In this study, based on microarray and RT-PCR data, we identified a rice green tissue-specific expression gene DX1 (LOC_Os12g33120). The expression pattern of DX1 gene promoter was examined by using the β-glucuronidase (GUS) reporter gene and analyzed in transgenic rice plants in different tissues. Histochemical assays and quantitative analyses of GUS activity confirmed that P (DX1):GUS was highly expressed in green tissues. To identify the regulatory elements controlling the expression of the DX1 gene, a series of 5' and 3' deletions of DX1 promoter were fused to GUS gene and stably introduced into rice plants. In addition, gel mobility shift assays and site-directed mutagenesis studies were used, allowing for the identification of two novel tissue-specific cis-acting elements (GSE1 and GSE2) within P(DX1). GSE1 acted as a positive regulator in all green tissues (leaf, sheath, stem and panicle). Compared with GSE1, GSE2 acted as a positive regulator only in sheath and stem tissue, and had a weaker effect on gene expression. In addition, P(DX1):GUS was not expressed in anther and seed, this characteristic reduced the potential ecological risk and potential food safety issues. Taken together, our results strongly suggest that the identified promoter, P(DX1), and its cis regulatory elements, GSE1 and GSE2, are potentially useful in the field of rice transgenic breeding. KEY MESSAGE: We have isolated and characterized the rice green tissue-specific promoter P(DX1), and identified two novel positive cis-acting elements in P(DX1).  相似文献   

16.
为研究水稻基因启动子对外源基因在转基因水稻中表达的影响,构建了由sbe1启动子引导的反义sbe-GUS融合基因。经农杆菌介导,将不同的融合基因导入水稻中,定量测定转基因水稻植株不同组织中的GUS酶活力。结果表明,sbe1启动子可驱动反义sbe-GUS融合基因在转基因水稻植株的胚乳中高效表达,而在颖壳、胚和茎叶等组织中的表达活性较弱。证实sbe1启动子在驱动外源基因的表达上表现有明显的组织特异性。  相似文献   

17.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号