首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xa1是一个能对日本白叶枯病优势小种(小种1号)产生专化性抗性的R基因,虽已有该基因克隆、表达和功能方面的研究,但对其表达调控分子机制还不很清楚。本研究利用Xa1启动子与GUS报告基因的转基因T1株系,研究了Xa1启动子的时空表达及对不同外源激素的应答特征。结果表明,Xa1启动子驱动的GUS基因在水稻根中的表达量明显高于茎和叶,且在根部的中柱区GUS的表达量明显高于周围组织;在外源MeJA作用下GUS的表达显著增强,在SA和ABA处理下也有一定程度的增强,这些结果暗示Xa1的抗病作用与其在根系中柱的组织特异性表达存在一定的相关性,MeJA对Xa1启动子的活性起重要的调控作用。  相似文献   

2.
Zhang GH  Wang H  Wang XD  Feng M  Li HM  Li SY 《遗传》2012,34(6):742-748
獐茅高亲和性K+转运蛋白基因(AlHAK1)是从单子叶禾本科盐生植物獐茅(Aeluropus littoralis(Gouan)Parl)中克隆,对于细胞营养和离子渗透调节起关键作用。为了进一步了解AlHAK1基因的表达调控机制,文章采用基因组步移法分离了AlHAK1基因转录起始位点上游长度约1.3 kb的启动子区域。启动子顺式元件分析显示该序列具有典型的TATA和CAAT盒,以及一些与植物生长发育和环境响应相关的顺式元件。为了明确AlHAK1启动子的功能,将其与GUS基因融合构建到植物表达载体pCAMBIA1301上,通过农杆菌介导转化法导入水稻中。对转基因植株进行GUS组织化学染色,结果显示在转化AlHAK1启动子水稻的根、茎、叶、花药和内外稃部位均检测到GUS活性。GUS荧光定量分析显示AlHAK1启动子调节GUS表达活性低于组成型启动子CaMV35S和Ubiquitin,但其根部和茎部的GUS活性相对较高。对转化植株进行不同胁迫处理后检测GUS活性,结果表明受到ABA、干旱、高温的诱导后其茎部和根部GUS活性有所提高,推测位于该启动子-682 bp的HSE元件和-1 268 bp的MybBS元件可能在高温、ABA和干旱诱导的表达调控中起作用。  相似文献   

3.
水稻OsEBP-89基因的表达受乙烯(ET)、脱落酸(ABA)、茉莉素等激素和干旱、低温等逆境胁迫处理的诱导.本研究中,克隆该基因启动子和预测应答胁迫与激素信号相关顺式作用元件的基础上,通过农杆菌注射法介导的瞬时表达证实了该启动子在烟草叶片中驱动GUS报告基因的表达受茉莉素的诱导.为了进-步确定该启动子中应答茉莉素信号的重要DNA区域,对该启动子进行了-系列的缺失突变,并将相关的缺失启动子片段与GUS报告基因融合.烟草叶片中GUS报告基因瞬时表达分析表明,该启动子中位于-1200bp和-800bp的碱基是该基因应答茉莉素信号的必需DNA区域,其中在-1127bp处有一个G—box元件;结合已有的研究结果,发现应答茉莉素信号的必需DNA区域不同于该基因应答ACC处理的必需DNA区域(在-562bp处存在一个ERE元件).总之,本研究结果有助于探讨该基因应答不同胁迫信号表达的分子机制.  相似文献   

4.
该研究在生物信息学分析的基础上,克隆玉米胚胎发生后期丰富蛋白基因(MGL3)的启动子序列(pMGL3),进行非生物逆境应答元件分析以及实时定量PCR验证其非生物逆境胁迫响应特性,构建了pMGL3启动子驱动报告基因(GUS)表达载体,基因枪法转化玉米愈伤组织,通过GUS染色验证pMGL3启动子在非生物逆境胁迫下的驱动活性。再根据启动子序列分析结果,去除不同的顺式作用元件,构建不同长度pMGL3启动子驱动报告基因GUS表达载体,农杆菌介导法转化烟草叶盘,以确定pMGL3启动子的最短活性序列。结果显示:pMGL3启动子长1 554bp,存在多种与非生物逆境胁迫应答相关的调控元件,在干旱、高盐、低温胁迫及脱落酸、乙烯诱导下驱动MGL3基因增量表达,用以驱动GUS基因转化玉米愈伤组织,在高渗、高盐、低温胁迫及脱落酸诱导下具有驱动活性,且截短至325bp仍可保持驱动活性。研究表明,pMGL3启动子的确有非生物逆境诱导启动活性,进一步验证其作用机理后可运用于玉米抗逆转基因研究。  相似文献   

5.
为将不同启动子用于转基因水稻的研究,从武运粳8号水稻中克隆了Rubisco小亚基基因(rbcS)的5'上游调控区,构建了由rbcS启动子引导的GUS融合基因,并经农杆菌介导导入到水稻中.对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS启动子可驱动GUS报告基因在转基因水稻植株叶片和叶鞘内的叶肉细胞中特异性高效表达,而在茎、根和种子等器官中不表达或表达活性极弱,表现出明显的组织与细胞特异性.结果还表明,光诱导处理可明显提高rbcS启动子启动的外源基因的表达量.  相似文献   

6.
以海州香薷基因组DNA为模板,通过hiTAIL-PCR和walking技术扩增得到其细胞壁转化酶基因启动子(Ehcw INVP)片段,长度为1727 bp。生物信息学分析结果表明,该启动子片段中含有多个对脱落酸、赤霉素、细胞分裂素等激素以及对干旱、低温、重金属铜等逆境胁迫响应相关的顺式作用元件。将通过克隆得到的Ehcw INVP序列替换p CAMBIA1301载体上驱动GUS报告基因表达的Ca MV35S启动子序列,构建Ehcw INVP融合GUS的植物表达载体Ehcw INVP::GUS。转基因拟南芥植株的组织化学分析结果表明,海州香薷细胞壁转化酶基因启动子序列具有驱动GUS基因表达的功能,且在10μmol/L铜胁迫下,转基因拟南芥植株叶和根中的GUS活性分别约是对照组的1.7倍和1.5倍。  相似文献   

7.
SPL(SQUAMOSA promoter-binding protein-like)是植物特有的转录因子,研究表明其在参与发育阶段转变、花和果实发育等方面起着重要作用。利用PCR技术从白桦基因组DNA中扩增获得BpSPL2基因上游1 960 bp启动子序列,使用PLACE和Plant CARE在线软件分析序列,发现BpSPL2基因启动子序列中含有与开花、非生物胁迫及激素响应等相关的顺式作用元件,暗示其在植物的生长发育和胁迫应答中起重要作用。进而构建了BpSPL2基因启动子驱动GUS报告基因的植物表达载体,并利用农杆菌介导将其瞬时转化至白桦和拟南芥,通过GUS组织化学染色检测BpSPL2基因启动子的组织表达特性,结果表明BpSPL2基因启动子具有启动子活性,能够驱动GUS基因在白桦和拟南芥中表达;而其表达活性在白桦的叶片、芽及根部中较强,在拟南芥的花药、雌蕊和叶片较强,为进一步研究白桦BpSPL2基因的表达调控及其功能分析提供参考。  相似文献   

8.
1,6-二磷酸果糖酶(EC3.13.11)催化1,6-二磷酸果糖分解为6-磷酸葡萄糖和无机磷酸.在高等植物的光合作用细胞中,存在两种1,6-二磷酸果糖酶:即叶绿体型1,6-二磷酸果糖酶和细胞质型1,6-二磷酸果糖酶.由于细胞质型1,6-二磷酸果糖酶在植物碳水化合物代谢中起重要作用,且具有表达特异性,本试验通过Genome Walking分离了水稻细胞质型1,6-二磷酸果糖酶基因的上游序列,并将其与β-葡糖醛酸酶(GUS)报告基因构建成嵌合表达载体.采用基因枪法转化水稻,在转基因水稻中分析了GUS的表达活性和特异性.组织化学检测表明,在转基因水稻的成熟叶片中,GUS基因只在叶肉细胞中表达,在表皮细胞、泡状细胞、维管组织中均无表达;在叶鞘中的表达与叶片中相似,仅仅在叶肉细胞中表达;在根、茎所有细胞中均没有蓝色反应.为进一步研究1,6-二磷酸果糖酶基因启动子在水稻中的表达量,对12株独立来源的转基因水稻的GUS 活性进行了荧光定量分析.结果显示,水稻成熟叶片中的GUS活性平均值为7 031.5 pmol 4-MU-1*min-1*mg蛋白.在不同器官及组织中表达活性有差异,在转基因水稻的叶片、叶鞘中GUS均有较强的表达,在根、茎中未检测到GUS活性.实验结果表明,ATG上游1 195 bp调控区足以导致GUS基因在水稻中的特异性表达,因此该片段包含有使报告基因在叶肉细胞中特异性表达的所有顺式调控元件.  相似文献   

9.
为克服组成型启动子启动外源基因过量表达引起的诸多问题,同源克隆(Mo-molybdopterin cofactor sulfurase)基因(ABA3)的启动子(ABA3s)序列,并用PlantCARE软件分析其非生物逆境应答元件, 实时定量PCR检测ABA3基因在非生物逆境诱导下的差异表达后。然后,用该启动子构建启动GUS(β-glucuronidase)基因的表达载体, 基因枪法转化玉米愈伤组织。经组织化学染色法检测其表达后, 在高渗、高盐、低温胁迫处理及ABA诱导下检测GUS酶荧光值与荧光素酶(内参)发光值的比值(GUS/LUC), 以此评价ABA3s启动子在非生物逆境胁迫下的启动活性。结果表明, ABA3基因在模拟干旱、低温、高温、高盐胁迫及ABA、乙稀诱导下差异表达, 说明该基因的启动子(ABA3s)具有非生物逆境诱导活性。序列分析表明, ABA3s启动子全长777 bp, 含有ARE、HSE、MBS、TGA、Circadian等多种非生物逆境胁迫应答元件。用ABA3s启动GUS基因构建的表达载体转化的玉米愈伤组织, 响应干旱、低温、高温、高盐胁迫等多种非生物逆境胁迫, 及ABA和乙稀诱导, GUS检测呈阳性。在8%甘露醇高渗条件下, GUS/LUC比值比空白对照高6倍。上述结果表明, ABA3s启动子具有非生物逆境诱导特性, 经进一步验证其功能后, 可用于玉米抗逆转基因研究。  相似文献   

10.
选择适宜的转录调控序列以提高启动子的转录效率,增强外源基因在转基因植株中的表达,对改良作物的抗病虫性具有重要意义。将甘露碱合成酶基因(mas)启动子和章鱼碱合成酶基因(ocs)增强子杂合而成的嵌合启动子ocs/mas与GUS报告基因连接,构建了植物表达载体pOMS-GUS。对照载体pMAS-GUS仅携带mas启动子驱动的GUS基因。利用根癌农杆菌介导法,将以上植物表达载体分别转化烟草。应用半定量RT-PCR和GUS荧光定量分析法分别检测不同胁迫条件下启动子驱动的GUS基因表达量的变化。结果显示,未诱导处理的转基因植株GUS基因仅有微弱表达。伤害处理1h后,mas启动子驱动的GUS活性是未诱导处理的1.8倍,而嵌合启动子ocs/mas的诱导表达活性是未处理的5.7倍。植物激素水杨酸(SA)和茉莉酸甲酯(MJ)处理也诱导了较高水平的ocs/mas嵌合启动子活性;而且SA和MJ联合作用时呈现叠加效应,转基因烟草的GUS活性明显高于伤害处理后的GUS表达水平。以上结果表明,ocs/mas嵌合启动子是一种强诱导型启动子,可以接受多种刺激因子的诱导,从而为更有效地改良作物抗病虫的能力提供新的候选高效启动子元件。  相似文献   

11.
pib基因启动子及其诱导启动性初探   总被引:6,自引:0,他引:6  
李婵娟  杨世湖  武亮  万建民 《遗传》2006,28(6):689-694
将pib基因上游5.7 kb区段取代pCAMBIA1301中gus基因上游的35S启动子构建了pib拟启动区-GUS+ 35S-hpt 基因表达载体pNAR604。经农杆菌介导转化水稻成熟胚愈伤,获得了转基因抗潮霉素愈伤和36株转基因水稻植株。 转基因抗性愈伤和转基因植株根的组织化学GUS活性检测表明,光照培养下的抗性愈伤和转基因植株根不能使X-gluc显色,而暗处理24 h后的抗性愈伤和定植后转基因植株的根能使X-gluc显色。转基因植株GUS荧光定量分析结果表明,GUS表达具有器官特异性,黑暗处理前根的GUS活性最高、茎次之,分别是是叶片的7倍和3倍,叶片中仅有痕量本底。24 h黑暗处理后根、茎、叶中GUS活性都有增加,且叶片中的增加比例最大,其活性仅次于根。5 mmol/L水杨酸和0.3 mol/L NaCl叶面喷施转基因植株24 h后叶片中GUS活性分别为处理前的2.7和3.6倍。初步确定pib拟启动区是一个诱导型启动子。黑暗、水杨酸和NaCl能诱导该启动子启动活性。  相似文献   

12.
陈晓童  吕可  刘涛  张荻 《西北植物学报》2021,41(8):1267-1278
在百子莲胚性细胞中筛选到对超低温保存复合逆境具有积极响应的保护类蛋白脱水素(ApY_2SK_2),为探明ApY_2SK_2基因在复合逆境中的应答模式,该研究采用染色体步移技术克隆并分析了ApY_2SK_2编码基因上游1 200 bp的启动子序列。结果表明:(1)序列分析显示,该启动子含有多个与逆境和激素诱导相关的顺式调控元件;实时荧光定量PCR结果表明,ApY_2SK_2基因的表达具有组织特异性,在百子莲的叶和果中表达量较高,且在多种胁迫处理与ABA激素诱导下,其表达量显著升高。(2)成功构建了5个ApY_2SK_2启动子不同缺失片段驱动GUS基因的融合表达载体,经农杆菌转化、抗性筛选和PCR检测鉴定,获得T_3代纯和转基因拟南芥株系。(3) GUS组织化学染色结果显示,GUS基因在拟南芥幼苗全株、成年苗的叶、花和成熟果实中表达活性较强,但在未成熟果实中无明显表达;烟草瞬时表达结果显示,与对照组相比,在脱水胁迫和ABA处理下的ApY_2SK_2启动子不同缺失片段驱动GUS基因表达具有显著差异。(4)转基因拟南芥GUS活性测定结果显示,ApY_2SK_2启动子MBS元件和ABRE元件可响应干旱与渗透胁迫信号;ApY_2SK_2启动子LTR元件参与低温响应;ApY_2SK_2启动子-1 199~-262 bp区域包含多个串联的ABRE顺式调控元件(-373~-211 bp)对响应ABA信号具有主要调控作用。该研究结果揭示了ApY_2SK_2启动子的组织特异性,且启动子上的关键顺式调控元件对不同的胁迫和激素信号响应具有决定性调控作用。  相似文献   

13.
从油葵中克隆得到LEA蛋白基因家族Ha ds10 G1基因的启动子序列,并对其进行功能分析。利用PCR技术从油葵品种"矮大头"基因组DNA中分离Ha ds10 G1基因上游的调控序列,将其与GUS基因融合,构建种子特异性表达载体p BI121-PHa ds10,通过根癌农杆菌介导法转化烟草(Nicotiana tabacum)NC89,对再生植株进行PCR、RT-PCR和GUS组织化学分析,以检测GUS基因在转基因烟草中的表达情况。结果表明,油葵Ha ds10 G1基因启动子长度为1 417 bp,与已报道的向日葵Ha ds10G1基因启动子序列同源性为89.42%。作用元件分析发现该区域除了具有启动子核心调控序列外,还含有多个与组织特异性、激素、逆境等表达相关的顺式作用元件,如RY重复元件、ABRE元件、TC-rich元件等。转基因植株的PCR结果显示,成功地获得了转基因阳性植株;GUS活性检测表明,该启动子序列仅能够驱动GUS基因在烟草种子表达,而在根、茎、叶等组织中均未检测到GUS基因表达。因此,油葵LEA蛋白基因家族Ha ds10 G1基因上游1 417 bp片段具有种子特异性启动子功能。研究结果为油葵等油料作物的油脂遗传改良提供组织特异性启动子。  相似文献   

14.
为研究6-磷酸山梨醇脱氢酶(sorbitol-6-phosphate dehydrogenase,S6PDH)基因启动子(S6PDHp)的逆境诱导表达特性,利用Gateway技术构建了S6PDH基因启动子区5'端系列缺失体与GUS基因的融合表达载体,并通过农杆菌介导法转化拟南芥。对转基因拟南芥进行低温和外源ABA处理,通过GUS蛋白活性变化分析S6PDHp的逆境诱导表达特性。研究结果发现,通过Gateway技术构建了4个S6PDHp 5'端系列缺失体与β-葡萄糖苷酸酶(GUS)基因的融合表达载体(pGWB433-S6PDHp1、pGWB433-S6PDHp2、pGWB433-S6PDHp3和p GWB433-S6PDHp4)并获得了相应的转基因拟南芥。对转基因植株进行低温处理后发现,p GWB433-S6PDHp3转基因植株中的GUS活性增幅最大,达到显著水平,而其他转基因植株中的GUS活性基本保持不变。外源ABA处理后发现,除p GWB433-S6PDHp4外,其余启动子缺失体转基因拟南芥中GUS活性显著升高。以上结果表明,低温和外源ABA能够诱导S6PDHp的表达,但不同的缺失体响应程度不同,意味着在S6PDHp序列(-2 396bp至-236bp)中可能存在着响应逆境胁迫的正负调控顺式作用元件。  相似文献   

15.
缺铁是世界范围内农业生产面临的严重问题,玉米通过分泌脱氧麦根酸(2’-deoxymugineic acid, DMA)吸收利用土壤中的难溶性铁。为探明玉米DMA分泌通道蛋白基因YS3的表达和调控机制,本文通过克隆获得长为2813 bp的YS3基因启动子,该序列含有大量TATA-box、CAAT-box等启动子基本元件,以及光响应、激素调控等多个顺式调控元件;构建YS3启动子驱动GUS基因的植物表达重组载体pCAMBIA-YS3GUS,利用农杆菌介导转化拟南芥,获得pYS3::GUS转基因植株,对转基因植株进行GUS组织化学染色,并通过石蜡切片技术对转基因植株进行组织观察,分析pYS3::GUS转基因植株中YS3基因启动子的活性。结果表明,YS3启动子主要驱动GUS基因在拟南芥根部表达,且主要集中在根部表皮细胞,机械损伤可激发YS3启动子活性,驱动GUS基因在损伤临近部位表达。本研究对于理解玉米DMA分泌的分子调控机理方法od3 gmaigensuan有重要意义。  相似文献   

16.
通过构建和筛选天麻(Gastrodia elata Bl.)基因组文库,克隆了一个天麻抗真菌蛋白基因组DNA.该基因组DNA含有一个516碱基组成的编码区,没有内含子结构.其启动子区含有保守的TATA盒及CAAT盒.为研究启动子活性,构建了-1 157 bp启动子区与GUS基因的融合表达载体.并将其用农杆菌(Agrobacterium tumefaciens)介导的遗传转化方法导入烟草(Nicotiana tabacum)中,获得了稳定转化的烟草.利用荧光检测及组织化学染色法对GUS表达进行了分析.结果表明,该启动子能够启动GUS基因在转基因烟草中组织特异性地表达.GUS基因在根中的表达水平最高,茎中次之,叶中只有低水平表达.而且该启动子具有诱导表达活性,可被真菌及水杨酸、茉莉酸强烈诱导表达.  相似文献   

17.
1,6-二磷酸果糖酶(EC3.13.11)催化1,6-二磷酸果糖分解为6-磷酸葡萄糖和无机磷酸。在高等植物的光合作用细胞中,存在两种1,6-二磷酸果糖酶:即叶绿体型1,6-二磷酸果糖酶和细胞质型1,6-二磷酸果糖酶。由于细胞质型1,6-二磷酸果糖酶在植物碳水化合物代谢中起重要作用,且具有表达特异性,本试验通过Genome Walking分离了水解细胞质型1,6-二磷酸果糖酶基因的上游序列,并将其与β-葡糖醛酸酶(GUS)报告基因建成嵌合表达载体。采用基因枪法转化水稻,在转基因水稻中分析了GUS的表达活性和特异性。组织化学检测表明,在转基因水稻的成熟叶片中,GUS基因只在叶肉细胞中表达,在表皮细胞,泡状细胞,维管组织中均无表达,在叶鞘中的表达与叶片中相似,仅仅在叶肉细胞中表达,在根,茎所有细胞中均没有蓝色反应,为进一步研究1,6-二磷酸果糖酶基因启动子在水稻中的表达量,对12株独立来源的转基因水稻的GUS活性进行了荧光定量分析。结果显示,水稻成熟叶片中的GUS活性平均值为7031.5pmol4-MU^-1.min^-1.mg蛋白。在不同器官及组织中表达活性有差异,在转基因水稻的叶片,叶鞘中GUS均有较强的表达,在根、茎中未检测到GUS活性,实验结果表明,ATG上游1195bp调控区足以导致GUS基因在水稻中的特异性表达,因此该片段包含有使报告基因在叶肉细胞中特异性表达的所有顺式调控元件。  相似文献   

18.
番茄rbcS3A启动子控制的GUS融合基因在转基因水稻中的表达   总被引:1,自引:0,他引:1  
为研究不同启动子用于转基因水稻,克隆了番茄Rubisco小亚基rbcS3A基因的5′上游调控区,构建了由rbcS3A启动子引导的GUS嵌合基因,并经农杆菌介导导入到水稻中。对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS3A启动子可驱动GUS报告基因在转基因水稻植株茎和叶组织中高效表达,而在根和种子等器官中不表达或表达活性极弱,表现出一定的组织特异性。在转基因水稻中,番茄rbcS3A启动子驱动外源基因的表达不受光诱导。  相似文献   

19.
该实验对CDF1类似蛋白基因(P1)在拟南芥叶片发育不同阶段的定量PCR结果显示,P1基因在拟南芥叶片发育的所有时期均可表达,但在茎生叶和衰老叶中的表达水平明显高于成熟叶和幼叶。GUS报告基因表达的组织化学染色结果显示,P1启动子在拟南芥叶片中有较高的驱动活性;在营养生长阶段的幼苗和植株(4~5周)的所有叶片中均能检测到GUS表达,但在植株转入生殖生长阶段后(6周及以后),GUS表达主要集中在逐渐衰老的叶中,并随着叶片衰老程度加剧GUS染色程度也越深,这一结果与GUS荧光定量检测结果一致。通过分析P1基因启动子上可能存在的顺式调控元件,发现茉莉酸甲酯、热压、干旱和水杨酸等均能够引起叶片衰老调控元件的响应,证实P1的表达受到这些因素的调控。研究表明,P1在拟南芥莲座叶片中很可能参与了对上游衰老信号的响应,该研究结果为进一步探究P1在叶片衰老过程中的分子功能验证奠定了基础。  相似文献   

20.
为确定拟南芥抗逆相关基因AtRPK1启动子的顺式功能元件,对其启动子区进行了分段克隆。通过5'端缺失方法得到203、316、604、809 bp 4个启动子片段,分别构建成p1300-pro-GUS表达载体,并转入拟南芥,进行GUS染色和GUS定量检测。通过对809 bp全长启动子转基因拟南芥GUS染色发现,转基因拟南芥的叶片、茎、花、根中均有表达,在分生能力强的组织和维管束集中的组织,AtRPK1基因启动子具有较高启动表达能力。5'端缺失启动子检测结果表明,转录起始点到启动子上游-114位点区域包含AtRPK1基因启动子的关键顺式作用元件。对启动子缺失片段转基因植株利用200 mmol·L-1NaCl胁迫3 h后,β-葡萄糖苷酸酶活力定量检测结果表明,在启动子上游-19位点处的GT-1顺式作用元件GAAAAA可能直接与盐胁迫应答相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号