首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
根据核小体定位序列和缺失序列的碱基分布特征,应用多样性增量二次判别方法(IDQD)构建模型对这两类序列进行了区分,受试者操作特性曲线下的面积达到了0.958.应用这一模型研究了核小体在人类基因组剪接位点(GT/AG)邻近序列中的分布方式,发现外显子所对应的DNA序列通常倾向参与核小体的形成,并且由它所转录的RNA统计上具有较强的刚性,而剪接位点及其邻近的内含子对应的DNA序列则避免参与核小体的形成,所转录的RNA统计上具有较强的柔性.进一步还发现,DNA序列的核小体定位/缺失和RNA的刚性/柔性具有统计相关性,为从机制上解释为何前体RNA剪接事件与DNA序列中的核小体定位信息有关提供了依据.  相似文献   

2.
组蛋白H2A的变体H2A.Z在基因的表达过程中发挥着重要的作用。根据H2A.Z和H2A核小体中组蛋白甲基化修饰方式的不同,作者应用多样性增量二次判别方法(increment of diversity with quadratic discriminant,IDQD)成功地对H2A.Z和H2A核小体进行了识别,说明了以组蛋白甲基化信息作为特征参数的IDQD模型对H2A.Z和H2A核小体识别的有效性。通过计算DNA序列的柔性,发现H2A.Z核小体对应的DNA序列的平均柔性比常规H2A核小体对应的DNA序列的平均柔性弱。  相似文献   

3.
作为目前遗传学热点领域表观遗传学的重要研究课题,核小体定位参与多种生物学过程并起着非常关键的作用,因此用理论方法预测核小体定位具有重要的生物学意义。该工作以酵母基因组为研究对象,根据其核心DNA与连接DNA序列的组分特征差异,分别统计其核苷酸k联体出现的频数,计算其多样性增量,并以此为特征值输入支持向量机构建模型。对酵母核小体核心DNA和连接DNA序列进行分类预测,整体准确率和相关系数分别达到93.10%和0.862。此方法在人类和果蝇的核小体核心DNA和连接DNA序列分类预测中也取得了较为理想的效果。将模型用于预测核小体在基因组上的位置取得初步成功。  相似文献   

4.
真核细胞中,作为染色质基本结构单元的核小体参与调控基因的转录、DNA复制、重组以及RNA剪接等诸多生物学过程。阐明核小体定位机制并准确预测核小体在染色体上的位置对解读染色质结构与功能有重要生物学意义。在过去30多年时间里,研究人员发展了多种预测核小体位置的方法。最理想的方法应考虑DNA序列、组蛋白修饰和染色质重塑等影响核小体定位的诸多因素,然而现实中,捕捉主要因素的模型也往往具有很高的鲁棒性和实用价值。DNA序列偏好性是在全基因组尺度上影响核小体定位的最重要因素之一,因此基于DNA序列的核小体定位预测方法也最常见。这种方法可大致分为两类,即基于DNA序列信息的生物信息学模型和基于DNA变形能的生物物理学模型。本文重点介绍生物物理学模型近些年取得的主要进展。  相似文献   

5.
统计了大肠杆菌sigma70启动子在不同基因间的分布。计算了683条大肠杆菌sigma70启动子的每个位点六联体的保守性M6(l)值及涨落限,以大于涨落限7.2的21个保守位点的六联体频数作为参数,利用离散增量理论对大肠杆菌全序列进行启动子搜索。结果显示683条启动子序列被全部正确预测且得到126条预测序列,利用启动子在不同基因间的分布和TSS到TIS的距离分布进行二次筛选,推测其中的84条序列是实验未测定的启动子序列。  相似文献   

6.
测定DNA的核苷酸序列,对于了解基因及其产物的结构、基因表达、及其表达的调控机制,乃至对于基因改造和分子进化研究等方面,均具有重要的意义。本文将就DNA序列分析技术的产生、应用和发展作一简单综述。一、DNA序列间接测定技术在分子生物学研究的早期,DNA序列信息只能由获得的氨基酸序列或RNA序列推测而来。在Waston和Crick的DNA双螺旋模型建立(1953年)不久,Sanger发明了氨基酸序列测  相似文献   

7.
传统的DNA序列可视化模型局限于短DNA序列的可视化,并且缺乏对可视化图形的通用分析方法。因此,文章提出了一种基于图像的DNA序列可视化模型,这种模型通过将一维的DNA序列转换为二维的256色的灰度图像,可以实现长DNA序列的可视化,具有很高的空间紧密性。借助成熟的图像处理方法来分析DNA可视化图像,可以获取原始DNA序列的规模、4种不同碱基的分布、无序程度等重要信息。通过比较不同DNA序列的可视化图像,可以获取这些序列的相似性信息。  相似文献   

8.
测定和分析霍乱弧菌分型噬菌体VP3基因组序列,并为ElTor型霍乱弧菌两类菌株的分型方法原理提供研究基础。鸟枪法构建VP3噬菌体全基因组随机文库;测序拼接成最小重叠群,引物步移法填补缝隙序列,拼接后获得VP3全基因组序列。PCR随机扩增噬菌体DNA片段并酶切鉴定;预测可能存在的开放读码框(ORF);对VP3和相关噬菌体的DNA聚合酶基因作进化树分析,协助判定VP3的分类;对预测的部分启动子区利用报道基因进行活性分析。VP3全基因组为环状双链DNA,长度39504bp;酶切鉴定结果与序列一致。确定了49个ORF,注释了27个ORF的编码产物,其中有20个基因产物与T7样噬菌体同源,包括RNA聚合酶(RNAP)、参与DNA复制的蛋白、衣壳蛋白、尾管及尾丝蛋白、DNA包装蛋白等。DNA聚合酶(DNAP)进化树分析表明VP3与T7样噬菌体有同源性。将预测的10个启动子序列克隆到lacZ融合质粒pRS1274上,经检测均具有启动子活性。测定和分析VP3的基因组序列,基因组结构与进化树分析提示VP3属于T7噬菌体家族。  相似文献   

9.
单链构象多态性(SSCP)分析是一种简便,快速检测DNA突变的方法,它在基因突变检测、遗传分析、进化研究等领域有着广泛的应用价值.但是这种方法的突变检出率随DNA序列不同而变化,一般只能达到70%~80%.这主要是有的碱基突变对单链DNA的构象影响较小,不能通过SSCP检测出来.将计算机对DNA二级结构的预测结果和实验结果作了对比,发现二者有很高的一致性.这一结果表明计算机的DNA单链二级结构预测分析可用于PCR-SSCP分析的辅助设计,提高SSCP的突变检出率.  相似文献   

10.
林木生长的多维时间序列分析   总被引:15,自引:0,他引:15  
利用多维时间序列分析方法,以影响杉木直径生长的五大主导气象要素作控制因子,建立杉木直径生长的CAR模型,从而对杉木直径生长提前一年作预测,回验结果表明模型准确率很高,为林木生长预测预报提供了一种新方法.  相似文献   

11.
Sequence-dependent flexibility in promoter sequences   总被引:7,自引:0,他引:7  
The non-neighbor interactions between base-pairs were taken into account to calculate the angular parameters (Omega, rho and tau) describing the orientation of successive base-pair planes and the translation parameters (D(y)) along the long axis of base-pair steps for 36 independent tetramers. A statistical mechanical model was proposed to predict the DNA flexibility that is mainly related to the thermal fluctuations at individual base-pair steps. The DNA flexibility can be described by the root-mean-square deviation of the end-to-end distance of DNA helical structure. The present model was then used to investigate the extreme flexible pattern in prokaryotic and eukaryotic promoter sequences. The results demonstrated several extreme flexible regions related to functionally important elements exist both in prokaryotic promoters and in eukaryotic promoters, DNA flexibility and AT content are highly correlated. The probabilities finding flexibility pattern in promoter sequences were also estimated statistically. The biological implications were discussed briefly.  相似文献   

12.
A statistical mechanical model taking into account the symmetric twisting, tilting, sliding fluctuations and asymmetric rolling fluctuations has been proposed to predict the macroscopic curvature and flexibility of B-DNA. Based on the statistical data of structural parameters of double helix in nucleic acid database and the related theoretical analysis, the equilibrium angular parameters (Omega, rho and tau) describing the orientation of successive base-pair planes, the translation parameters (D(y)) along the long axis of neighboring base-pair step and the corresponding force constants are arranged for ten dimers appropriately. Under the assumption of independent angular parameters, independent base-pair steps and a simple energy function, we can calculate the macroscopic curvature and the flexibility of DNA sequences through the transformation matrix and the Boltzmann ensemble average. The predictions on curvature and flexibility of DNA have been compared with the corresponding experimental data. The agreement is remarkably good. It is demonstrated that the lowering of the temperature does increase the DNA curvature.  相似文献   

13.
The CRISPR‐associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single‐guide RNA (sgRNA). Structural studies have revealed the multi‐domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA. These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single‐molecule FRET. We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures. Importantly, the HNH nuclease domain only accessed the DNA cleavage position during such flexible movements, suggesting the importance of this flexibility in the DNA cleavage process. Our FRET data also revealed the conformational flexibility of apo‐Cas9, which may play a role in the assembly with the sgRNA. Collectively, our results highlight the potential role of domain fluctuations in driving Cas9‐catalyzed DNA cleavage.  相似文献   

14.
15.
Molecular dynamics simulations of the nucleosome core particle and its isolated DNA free in solution are reported. The simulations are based on the implicit solvent methodology and provide insights into the nature of large-scale structural fluctuations and flexibility of the nucleosomal DNA. In addition to the kinked regions previously identified in the x-ray structure of the nucleosome, the simulations support the existence of a biochemically identified distorted region of the DNA. Comparison of computed relative free energies shows that formation of the kinks is associated with little, if any, energy cost relative to a smooth, ideal conformation of the DNA superhelix. Isolated nucleosomal DNA is found to be considerably more flexible than expected for a 147 bp stretch of DNA based on its canonical persistence length of 500 A. Notably, the significant bending of the DNA observed in our simulations occurs without breaking of Watson-Crick bonds. The computed relative stability of bent conformations is sensitive to the ionic strength of the solution in the physiological range; the sensitivity suggests possible experiments that might provide further insights into the structural origins of the unusual flexibility of the DNA.  相似文献   

16.
Curvature and flexibility are structural properties of central importance to genome function. However, due to the difficulties in finding suitable experimental conditions, methods for studying one without the interference of the other have proven to be difficult. We propose a new approach that provides a measure of inherent flexibility of DNA by taking advantage of two powerful techniques, X-ray crystallography and nuclear magnetic resonance. Both techniques are able to detect local curvature on DNA fragments but, while the first analyzes DNA in the solid state, the second works on DNA in solution. Comparison of the two data sets allowed us to calculate the relative contribution to flexibility of the three rotations and three translations, which relate successive base pair planes for the ten different dinucleotide steps. These values were then used to compute the variation of flexibility along a given nucleotide sequence. This allowed us to validate the method experimentally through comparisons with maps of local fluctuations in DNA molecule trajectory constructed from atomic force microscopy imaging in solution. We conclude that the six dinucleotide-step parameters defined here provide a powerful tool for the exploration of DNA structure and, consequently will make an important contribution to our understanding of DNA-sequence-dependent biological processes.  相似文献   

17.
The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.  相似文献   

18.
DNA cyclization is potentially the most powerful approach for systematic quantitation of sequence-dependent DNA bending and flexibility. We extend the statistical mechanics of the homogeneous DNA circle to a model that considers discrete basepairs, thus allowing for inhomogeneity, and apply the model to analysis of DNA cyclization. The theory starts from an iterative search for the minimum energy configuration of circular DNA. Thermodynamic quantities such as the J factor, which is essentially the ratio of the partition functions of circular and linear forms, are evaluated by integrating the thermal fluctuations around the configuration under harmonic approximation. Accurate analytic expressions are obtained for equilibrium configurations of homogeneous circular DNA with and without bending anisotropy. J factors for both homogeneous and inhomogeneous DNA are evaluated. Effects of curvature, helical repeat, and bending and torsional flexibility in DNA cyclization are analyzed in detail, revealing that DNA cyclization can detect as little as one degree of curvature and a few percent change in flexibility. J factors calculated by our new approach are well consistent with Monte Carlo simulations, whereas the new theory has much greater efficiency in computations. Simulation of experimental results has been demonstrated.  相似文献   

19.
Ethylene-responsive element (ERE) binding factors is responsible for a consensus nucleotide sequence AGCCGCC (GCC-box) binding in many important process of plant growing through gene regulation and mediating signal transduction pathways in response to environmental stress. The GCC-box binding domain (GBD) as a novel fold for DNA recognition has been analyzed by means of molecular dynamics. The simulations show that the complex of GBD-DNA trajectories show similar fluctuations in the atomic positions as uncomplexed, particularly at three beta strands involving DNA binding. The calculations of entropy also affirm that GBD flexibility is basically similar for two ligation states. Further, the two complexation states present similar patterns of concerted motions, indicating that the bound DNA cannot alter GBD flexibility. It is inferred that the flexibility of GBD molecule is independent of its ligation state. So in the protein-DNA recognition, the GBD cannot be easily induced while DNA shows better flexibility. Comparison between simulations of unligated GBD and the complexed GBD (in isolation or DNA-bound) reveals intrinsic flexibilities in some certain parts of the molecule play a key role in DNA recognition. In addition, MD simulation identifies that water molecule may mediate interaction between GBD and DNA.  相似文献   

20.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号