首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
聚羟基脂肪酸酯 (PHA)是一类具有广泛应用前景的可降解生物塑料。因其可以以葡萄糖等廉价底物直接发酵生产PHA而日益受到重视。目前的研究表明在积累中长链PHA的假单胞菌中 ,由phaG基因编码的(R)3 羟基酯酰载酯蛋白 辅酶A转酰基酶 (PhaG)起关键作用 ,但目前为止对该蛋白还知之甚少。通过聚合酶链式反应 (PCR)建立了一种快速、特异鉴定phaG基因的方法 ,应用该方法成功地从两株积累不同PHA的假单胞菌Pseudomonasstutzeri 1317和Pseudomonasnitroreducens 080 2中分别克隆得到phaG基因 ,并在phaG基因突变株PseudomonasputidaPHAGN-21中表达成功。同时 ,还首次报道了从非假单胞菌菌株Burkholderiacaryophylli AS 1.274 1中鉴定得到phaG基因 ,提示PhaG介导的中长链PHA合成途径作为一种通用的代谢模式在细菌中广泛存在 ,为进一步实现从廉价的非相关底物合成中长链PHA提供了必要的分子生物学基础。  相似文献   

2.
群体感应是细菌根据细胞密度变化调控基因表达的一种调节机制。铜绿假单胞菌中QS系统由lasI和rhlI合成的信号分子3OC12-HSL和C4-HSL以及各自的受体蛋白LasR、RhlR组成,它们以级联方式调控多个基因表达。【目的】研究细菌群体感应(QS)对聚羟基脂肪酸酯合成的调控。【方法】利用铜绿假单胞菌PAO1及其QS突变株为材料通过气相色谱、荧光定量PCR在生理和分子水平上研究QS对聚羟基脂肪酸酯合成的调控。【结果】QS信号分子合成抑制剂阿奇霉素处理铜绿假单胞菌PAO1和QS突变株导致胞内PHA积累量显著减少;铜绿假单胞菌PAO1中C4-HSL合成酶基因rhlI缺失突变株PAO210胞内PHA积累量与野生型无差别;而3OC12-HSL合成酶基因lasI缺失突变株PAO55、3OC12-HSL受体合成酶基因lasR缺失突变株PAO56以及lasI/lasR双缺失突变株PAO57胞内PHA含量与野生型相比明显减少;lasI和lasR的突变株体内PHA合成酶基因phaC1的表达量显著降低,信号分子3OC12-HSL回补实验使phaC1的表达量可恢复到野生株水平,但只可部分恢复lasI缺失导致的胞内PHA合成。【结论】由此推测,铜绿假单胞菌群体感应系统中lasI/lasR系统参与胞内聚羟基脂肪酸酯合成的调控。  相似文献   

3.
4.
5.
【背景】传统石油基塑料产品给人类和环境带来的危害日益严重,聚羟基脂肪酸酯(polyhydroxyalknoates,PHA)作为新型可降解塑料原料越来越受到青睐。但PHA生产成本过高,使其推广应用严重受限。筛选适合大规模生产PHA的高产菌株是解决这一问题的重要途径。【目的】以挖掘合成PHA的菌种资源为目标,从极端环境筛选和鉴定新的高产PHA合成菌。【方法】通过尼罗蓝平板分离法和PCR法分离纯化菌株,采用16S rRNA基因鉴定并通过MEGA 6.0软件构建系统发育树,分析菌株的进化关系,最后通过尼罗红染色定性分析和气相色谱法定量测定该菌株在不同时期的PHA积累量。【结果】从盐碱地垃圾沉积物中分离得到了一株高产PHA的菌株,PhaC的PCR扩增结果证实了该菌株是PHA合成菌,经16S rRNA基因鉴定为Pseudomonas brassicacearum,将其命名为NP-2,进一步优化了菌株NP-2的培养条件,在培养48h时PHA积累量最大,达到3.78 mg/mL。【结论】NP-2属于Pseudomonas brassicacearum,能高产PHA。本研究为生产PHA提供了极端环境的...  相似文献   

6.
微生物合成中链聚羟基烷酸酯研究进展   总被引:3,自引:0,他引:3  
严群  李寅  陈坚  堵国成   《生物工程学报》2001,17(5):485-490
某些微生物细胞在特定营养限制的条件下会产生聚羟基烷酸酯作为碳源储备。和短链聚羟基烷酸酯(PHB)一样 ,中链聚羟基烷酸酯由于具有更优良的性能、更高的附加值和更广泛的用途而受到人们的关注 ;此外 ,中链聚羟基烷酸酯还可以被人工合成为具有功能性侧链的半合成高聚物 ,并因此能够具有更好的弹性和更理想的结晶性能等优点 ,从而成为近年来对环境友好的生物可降解材料的研究重点。在能够合成中链聚羟基烷酸酯的微生物中 ,食油假单胞菌是最典型 ,也是研究得最多的一种。本文对由食油假单胞菌合成中链聚羟基烷酸酯的特点、代谢机制、发挥过程等内容进行了综述 ,并提出了这一研究领域未来可能的研究方向  相似文献   

7.
具胶原蛋白酶活性铜绿假单胞菌的筛选*   总被引:1,自引:1,他引:0  
从成都皮革厂等堆积废弃毛皮、皮革的场所采集土样,通过以明胶为主要基质培养基进行富集和初筛,获得95株有明胶酶活性菌株。挑选其中28株明胶酶活性较高的菌株进行牛皮消化试验,有12株菌能在48h内完全消化小牛皮。以Ⅲ型酸溶性胶原为底物,测定了12株菌发酵培养液中胶原蛋白酶活性,确认这12株菌都具有胶原蛋白酶活性,酶活力基本相同,约10-16U/mL。经形态观察、生理生化特征分析及BIOLOG微生物鉴定仪鉴定,这12株菌分为两类,分别是铜绿假单胞菌(Pseudomonas aeraginosa)和火神发光杆菌(Photobacterium logei)(结果另发表)。对铜绿假单胞菌产生胶原蛋白酶粗酶性质进行了研究,其酶活最适温度为32℃,最适pH为7.5,可以被金属蛋白酶抑制剂EDTA和EGTA部分抑制,不能被PMSF抑制。对铜绿假单胞菌产胶原蛋白酶发酵条件的研究表明,不仅培养基中氮源、碳源和金属离子影响产酶量,而且发酵工艺对胶原蛋白酶的产生也有较大影响。  相似文献   

8.
一株烟酸羟基化转化菌株的筛选和鉴定   总被引:9,自引:3,他引:6  
从南京地区的土壤中筛选到一株高效转化烟酸为 6_羟基烟酸的菌株NA_1。形态及生理生化特征测定结果表明 ,NA_1菌株与假单胞菌属 (Pseudomonas)中的恶臭假单胞菌 (P .putida)种的特征基本一致。测定了该菌株的16SrDNA序列并根据 16SrDNA构建了系统发育树 ;在系统发育树中 ,NA_1菌株与恶臭假单胞菌形成一个类群 ,序列同源性为 99%。因此将NA_1菌株鉴定为恶臭假单胞菌  相似文献   

9.
研究发现门多萨假单胞菌NK-01在菌体内积累中长链聚羟基脂肪酸酯(PHAMCL)的同时也能够合成褐藻寡糖分泌到发酵液中,其产量与培养基的碳氮比有关,高碳氮比有利于褐藻寡糖的合成。本研究利用紫外-可见分光光度法、傅立叶红外光谱分析、1H和13C核磁共振对褐藻寡糖的结构进行了分析鉴定,发现褐藻寡糖的结构是由β-D-甘露糖醛酸、α-L-古洛糖醛酸通过β-(1→4)/α-(1→4)键连接而成的无支化线性多糖,并且在单体的2位或3位羟基上部分乙酰化。凝胶渗透色谱(GPC)对分子量的测定结果为2054。  相似文献   

10.
假单胞菌 (Pseudomonas sp.) M18 是促进植物生长的根际细菌, 能产生吩嗪-1-羧酸 (PCA) 和藤黄绿菌素 (Plt) 两种不同的抗生素。根据生物信息学分析, 铜绿假单胞菌PA2572基因编码蛋白可能是一个双元调控系统的应答调节子。本研究从假单胞菌M18基因组中扩增出PA2572同源基因片段ppbR, 利用体外定点插入突变和同源重组技术构建了M18 的ppbR突变株M18P。研究结果表明, 突变株M18P在泳动能力和群集运动能力上有显著的下降。突变株合成PCA 的能力比野生型有显著的下降, 在发酵液中PCA积累量仅为野生型的50%。在KMB培养基中, 突变株Plt的积累量和野生型没有显著的差异。  相似文献   

11.
12.
We recently identified the phaG(Pp) gene encoding (R)-3-hydroxydecanoyl-ACP:CoA transacylase in Pseudomonas putida, which directly links the fatty acid de novo biosynthesis and polyhydroxyalkanoate (PHA) biosynthesis. An open reading frame (ORF) of which the deduced amino acid sequence shared about 57% identity with PhaG from P. putida was identified in the P. aeruginosa genome sequence. Its coding region (herein called phaG(Pa)) was amplified by PCR and cloned into the vector pBBR1MCS-2 under lac promoter control. The resulting plasmid pBHR88 mediated PHA synthesis contributing to about 13% of cellular dry weight from non-related carbon sources in the phaG(Pp)-negative mutant P. putida PhaG(N)-21. The PHA was composed of 5 mol% 3-hydroxydodecanoate, 61 mol% 3-hydroxydecanoate, 29 mol% 3-hydroxyoctanoate and 5 mol% 3-hydroxyhexanoate. Furthermore, an isogenic phaG(Pa) knock-out mutant of P. aeruginosa was constructed by gene replacement. The phaG(Pa) mutant did not show any difference in growth rate, but PHA accumulation from gluconate was decreased to about 40% of wild-type level, whereas from fatty acids wild-type level PHA accumulation was obtained. These data suggested that PhaG from P. aeruginosa exhibits 3-hydroxyacyl-ACP:CoA transacylase activity and strongly enhances the metabolic flux from fatty acid de novo synthesis towards PHA(MCL) synthesis. Therefore, a function could be assigned to the ORF present in the P. aeruginosa genome, and a second PhaG is now known.  相似文献   

13.
Five Pseudomonas strains capable of growth with the aromatic carboxylic acid phenylacetic acid were investigated with a view to improving PHA accumulation. The overexpression of (R)-3-hydroxyacyl-ACP-CoA transferase (PhaG) from Pseudomonas putida CA-3 increased PHA accumulation in only one of the five strains tested, namely Pseudomonas jessenii C8. Recombinant P. jessenii C8 harbouring the phaG gene showed a 4.1-fold increase (9.6-39% cell dry weight) in PHA accumulation when grown on phenylacetic acid (15 mM) compared with the wild-type strain. This is the highest reported level of PHA accumulation from phenylacetic acid. This is also the first time the heterologous expression of phaG has resulted in improved PHA accumulation from an aromatic carbon source. The growth patterns of the wild type and recombinant strains were very similar, with no significant differences observed in carbon and nitrogen utilization.  相似文献   

14.
Recently, a new metabolic link between fatty acid de novo biosynthesis and biosynthesis of poly(3-hydroxy-alkanoate) consisting of medium-chain-length constituents (C(6) to C(14)) (PHA(MCL)), catalyzed by the 3-hydroxydecanoyl-[acyl-carrier-protein]:CoA transacylase (PhaG), has been identified in Pseudomonas putida (B. H. A. Rehm, N. Krüger, and A. Steinbüchel, J. Biol. Chem. 273:24044-24051, 1998). To establish this PHA-biosynthetic pathway in a non-PHA-accumulating bacterium, we functionally coexpressed phaC1 (encoding PHA synthase 1) from Pseudomonas aeruginosa and phaG (encoding the transacylase) from P. putida in Pseudomonas fragi. The recombinant strains of P. fragi were cultivated on gluconate as the sole carbon source, and PHA accumulation to about 14% of the total cellular dry weight was achieved. The respective polyester was isolated, and GPC analysis revealed a weight average molar mass of about 130,000 g mol(-1) and a polydispersity of 2.2. The PHA was composed mainly (60 mol%) of 3-hydroxydecanoate. These data strongly suggested that functional expression of phaC1 and phaG established a new pathway for PHA(MCL) biosynthesis from nonrelated carbon sources in P. fragi. When fatty acids were used as the carbon source, no PHA accumulation was observed in PHA synthase-expressing P. fragi, whereas application of the beta-oxidation inhibitor acrylic acid mediated PHA(MCL) accumulation. The substrate for the PHA synthase PhaC1 is therefore presumably directly provided through the enzymatic activity of the transacylase PhaG by the conversion of (R)-3-hydroxydecanoyl-ACP to (R)-3-hydroxydecanoyl-CoA when the organism is cultivated on gluconate. Here we demonstrate for the first time the establishment of PHA(MCL) synthesis from nonrelated carbon sources in a non-PHA-accumulating bacterium, employing fatty acid de novo biosynthesis and the enzymes PhaG (a transacylase) and PhaC1 (a PHA synthase).  相似文献   

15.
Since Pseudomonas aeruginosa is capable of biosynthesis of polyhydroxyalkanoic acid (PHA) and rhamnolipids, which contain lipid moieties that are derived from fatty acid biosynthesis, we investigated various fab mutants from P. aeruginosa with respect to biosynthesis of PHAs and rhamnolipids. All isogenic fabA, fabB, fabI, rhlG, and phaG mutants from P. aeruginosa showed decreased PHA accumulation and rhamnolipid production. In the phaG (encoding transacylase) mutant rhamnolipid production was only slightly decreased. Expression of phaG from Pseudomonas putida and expression of the beta-ketoacyl reductase gene rhlG from P. aeruginosa in these mutants indicated that PhaG catalyzes diversion of intermediates of fatty acid de novo biosynthesis towards PHA biosynthesis, whereas RhlG catalyzes diversion towards rhamnolipid biosynthesis. These data suggested that both biosynthesis pathways are competitive. In order to investigate whether PhaG is the only linking enzyme between fatty acid de novo biosynthesis and PHA biosynthesis, we generated five Tn5 mutants of P. putida strongly impaired in PHA production from gluconate. All mutants were complemented by the phaG gene from P. putida, indicating that the transacylase-mediated PHA biosynthesis route represents the only metabolic link between fatty acid de novo biosynthesis and PHA biosynthesis in this bacterium. The transacylase-mediated PHA biosynthesis route from gluconate was established in recombinant E. coli, coexpressing the class II PHA synthase gene phaC1 together with the phaG gene from P. putida, only when fatty acid de novo biosynthesis was partially inhibited by triclosan. The accumulated PHA contributed to 2 to 3% of cellular dry weight.  相似文献   

16.
An inactive (R)-3-hydroxyacyl-acyl carrier protein:coenzyme A transacylase (PhaG(Pm)) was cloned from a newly isolated Proteobacteria Pseudomonas mendocina LZ. It is the first characterized native inactive PhaG protein. Sequence analysis indicated that there were only two sites where the amino acid sequence differed between this inactive protein and the functional PhaG(Pp) from P. putida. The differences were located at position 78 and in the region 109-113 in the amino acid sequence. Mutagenesis was carried out to investigate these two sites. A recombinant strain harboring a S78C PhaG(Pp) mutant accumulated polyhydroxyalkanoates (PHA) at 11.9% of the cellular dry weight, as compared to the 21.6% PHA produced by the recombinant harboring the wild-type PhaG(Pp). On the other hand, the changes in the amino acid region 109-113 of PhaG(Pp) to its corresponding region of PhaG(Pm) resulted in negligible PHA accumulation. This demonstrated that region 109-113 in PhaG is relatively important for transacylase activity, while position 78 just plays a supporting role for the enzyme. Furthermore, 3-D structural models of PhaG(Pp) and PhaG(Pm) developed by computational prediction revealed that the variation in amino acids at 109-113 leads to the destruction of the PhaG catalytic center, resulting in the loss of enzyme activity.  相似文献   

17.
18.
Pseudomonas putida CA-3 is capable of accumulating medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when growing on the toxic pollutant styrene as the sole source of carbon and energy. In this study, we report on the molecular characterization of the metabolic pathways involved in this novel bioconversion. With a mini-Tn5 random mutagenesis approach, acetyl-coenzyme A (CoA) was identified as the end product of styrene metabolism in P. putida CA-3. Amplified flanking-region PCR was used to clone functionally expressed phenylacetyl-CoA catabolon genes upstream from the sty operon in P. putida CA-3, previously reported to generate acetyl-CoA moieties from the styrene catabolic intermediate, phenylacetyl-CoA. However, the essential involvement of a (non-phenylacetyl-CoA) catabolon-encoded 3-hydroxyacyl-CoA dehydrogenase is also reported. The link between de novo fatty acid synthesis and PHA monomer accumulation was investigated, and a functionally expressed 3-hydroxyacyl-acyl carrier protein-CoA transacylase (phaG) gene in P. putida CA-3 was identified. The deduced PhaG amino acid sequence shared >99% identity with a transacylase from P. putida KT2440, involved in 3-hydroxyacyl-CoA MCL-PHA monomer sequestration from de novo fatty acid synthesis under inorganic nutrient-limited conditions. Similarly, with P. putida CA-3, maximal phaG expression was observed only under nitrogen limitation, with concomitant PHA accumulation. Thus, beta-oxidation and fatty acid de novo synthesis appear to converge in the generation of MCL-PHA monomers from styrene in P. putida CA-3. Cloning and functional characterization of the pha locus, responsible for PHA polymerization/depolymerization is also reported and the significance and future prospects of this novel bioconversion are discussed.  相似文献   

19.
20.
Medium-chain-length-polyhydroxyalkanoic acids (MCL-PHAs) formed in Pseudomonas spp. have a rather broad distribution of monomer-units whose precursors are supplied via beta-oxidation degradation of MCL fatty acids fed as the carbon source and/or via PhaG enzyme catalyzing the acyl-group transfer from 3-hydroxyacyl-ACPs derived from acetyl-CoA to coenzyme A. It was found that salicylic acid (SA), in a concentration dependent manner, suppressed the accumulation of PHA in Pseudomonas fluorescens BM07 from fructose as well as shifted the distribution of monomer-units derived from a MCL fatty acid co-added as carbon source (e.g., 11-phenoxyundecanoic acid (11-POU)) to longer monomer-units. Both SA and acrylic acid were found to induce high accumulations of 3-ketohexanoic acid in BM07 wild-type cells grown with n-hexanoic acid as well as to inhibit the formation of acetyl-CoA from acetoacetyl-CoA by BM07 cell extract, suggesting that 3-ketoacyl-CoA thiolase is their common beta-oxidation target. The structural motif of acrylic acid present in the molecular structure of SA may self-explain the similar actions of the two inhibitors. A comparison of monomer modulation between BM07 wild-type and DeltaphaG mutant cells grown on the mixtures of fructose and 11-POU revealed that both PhaG and beta-oxidation inhibitor may play a critical role in the synthesis of PHA with longer side-chain omega-functional substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号