首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 343 毫秒
1.
假单胞菌(Pseudomonas sp.)M18是促进植物生长的根际细菌,能产生吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种不同的抗生素.根据生物信息学分析,铜绿假单胞菌PA2572基因编码蛋白可能是一个双元调控系统的应答调节子.本研究从假单胞菌M18基因组中扩增出PA2572同源基因片段ppbR,利用体外定点插入突变和同源重组技术构建了M18的ppbR突变株M18P.研究结果表明,突变株M18P在泳动能力和群集运动能力上有显著的下降.突变株合成PCA的能力比野生型有显著的下降,在发酵液中PCA积累量仅为野生型的50%.在KMB培养基中,突变株Plt的积累量和野生型没有显著的差异.  相似文献   

2.
【目的】在假单胞菌中,小RNA(sRNA)参与初级和次级代谢产物、多种毒素因子以及菌群传感系统的调控,通过在植物根际促生铜绿假单胞菌M18中研究RsmY对吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种抗生素的调控作用,深入了解假单胞菌中次级代谢的途径并为构建高产抗生素工程菌株提供了一定的理论基础。【方法】运用同源重组技术,构建了铜绿假单胞菌M18株的rsmY突变菌株M18RY,通过基因过表达、lacZ报告基因融合分析实验,进一步验证了RsmY对抗生素合成基因的调控作用。【结果】比较野生型M18和突变株M18RY中PCA和Plt在同一培养条件下的生物合成量,突变菌株M18RY中PCA的产量显著增加,为野生型菌株的5倍左右,而Plt的产量降为野生型的1/8。LacZ报告基因融合分析进一步证明了RsmY对PCA的负调控作用主要是通过phz2基因簇来实现的。【结论】结果表明,rsmY基因区别性调控PCA和Plt的生物合成。  相似文献   

3.
荧光假单胞菌M18的rpoS基因克隆及其功能分析   总被引:2,自引:0,他引:2  
从荧光假单胞菌 (Pseudomonasfluorescentsp .)M1 8基因组中克隆了RNA聚合酶的稳定期σs 因子编码基因rpoS ,推测其氨基酸序列与铜绿假单胞菌、荧光假单胞菌和恶臭假单胞菌的同源性分别为 99 1 %、87 35 %和87 8%。利用体外定点插入突变和同源重组技术 ,构建了M1 8的rpoS突变株M1 8R- 。对突变株M1 8R- 合成抗生素吩嗪 1 羧酸 (PCA)和藤黄绿菌素 (Plt)的动力学分析结果表明 ,在KB或PPM培养基中 ,突变株合成PCA的能力比野生型分别提高了 2 5或 5 78倍 ,但Plt的积累量不受影响。与野生型相比 ,突变株对碳源饥饿的耐性下降。同时 ,在碳源饥饿条件下对过氧化氢、乙醇和和氯化钠等环境胁迫的交叉保护性减小 ,存活率显著降低  相似文献   

4.
【目的】假单胞菌M18是一株能同时合成吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种抗生素的植物根际促生细菌。PsrA为细菌TetR家族转录调控因子。为了研究PsrA对PCA与Plt生物合成的影响,从M18菌株基因组中扩增psrA基因。【方法】通过同源重组技术,构建庆大霉素抗性片段置换psrA的突变菌株M18psrA。利用基因互补、lacZ报告基因融合分析实验,验证PsrA对抗生素合成基因的调控作用。【结果】在PPM和KMB培养基中,分别比较野生型菌株M18和突变菌株M18psrA的PCA与Plt产量,突变菌株M18psrA的PCA产量显著下降;Plt产量显著升高,为野生型菌株的10-15倍。基因互补、lacZ报告基因融合分析,进一步证明了psrA正调控PCA的phz2合成基因簇,负调控Plt的合成基因簇。【结论】PsrA区别性调控抗生素PCA与Plt的生物合成。  相似文献   

5.
假单胞菌株M18分泌藤黄绿脓菌素 (Pyoluteorin ,Plt )和吩嗪 1 羧酸 (Phenazine 1 carboxylicacid ,PCA)并抑制多种植物病菌的生长。从M18中克隆双基因调控系统gacS gacA的组成基因gacA ,并构建了该基因抗性插入突变株M18G。在KMB培养基中 ,M18G合成Plt的能力受到完全抑制 ,而PCA的积累约比野生型提高 31倍左右。Plt合成基因簇突变株M18T和在M18G基础上构建的PCA合成基因簇突变株M18GA的Plt和PCA合成的动力学变化表明 ,在M18G菌株中 ,Plt合成的抑制并不引起PCA的过量积累 ,PCA的过量积累也不引起Plt合成的抑制。由此推测 ,gacA在基因表达的水平上全局性地执行着调控功能  相似文献   

6.
假单胞菌M18是一株能同时合成藤黄绿脓菌素(Plt)和吩嗪-1-羧酸(PCA)两种抗生物质的植物根际促生细菌。运用PCR方法, 从M18基因组中扩增得到pqsR基因, 该基因编码LysR家族调控蛋白PqsR。通过同源重组技术, 构建假单胞菌M18的pqsR突变菌株M18PRG。比较野生型菌株M18和突变菌株M18PRG在KMB培养基的Plt产量, 发现M18PRG 菌株合成Plt的量约为野生型M18菌株的3~4倍。在pqsR突变株的反式互补实验中, Plt的产量回复到野生型水平。pltA′-′lacZ翻译融合的测定结果进一步证明PqsR对Plt生物合成基因簇具有负调控作用。分析M18野生型及其pqsR突变株的生长曲线, 发现PqsR对细菌的生长具有抑制作用。另外, 我们还发现pqsR基因调控红色色素的产生。上述结果表明, 在假单胞菌M18中, PqsR作为全局性调控因子参与了细胞内多种生理活动的调控。  相似文献   

7.
假单胞菌(Pseudomonas sp.)M18是促进植物生长的根际细菌,能产生吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种不同的抗生素抑制植物病原菌,保护植物免受病害。运用PCR方法,从M18基因组中,扩增出rsmA基因部分片段,并以该片段为探针,从M18的基因组柯斯文库中筛出阳性克隆,切取带有rsmA基因及两侧序列的1.5kb片段,中间插入编码Km‘的DNA片段,获得rsmA^-体外突变体。运用同源重组剔除技术,构建了M18菌株的rsmA突变株M18R^-。突变株M18R^-生物合成Plt的能力比野生型M18提高4倍,但是,PCA产量仅为野生型的20%。研究结果表明,全局性调控基因rsmA可能通过不同的机制区别性地影响Plt和PCA的生物合成。  相似文献   

8.
假单胞菌株M18分泌藤黄绿脓菌素(Pyoluteorin,Plt )和吩嗪1羧酸(Phenazine1carboxylic acid, PCA)并抑制多种植物病菌的生长。 从M18中克隆双基因调控系统gacS/gacA的组成基因gacA,并构建了该基因抗性插入突变株M18G。在KMB培养基中,M18G合成Plt的能力受到完全抑制,而PCA的积累约比野生型提高31倍左右。Plt合成基因簇突变株M18T和在M18G基础上构建的PCA合成基因簇突变株M18GA的Plt和PCA合成的动力学变化表明,在M18G菌株中,Plt合成的抑制并不引起PCA的过量积累,PCA的过量积累也不引起Plt合成的抑制。由此推测,gacA在基因表达的水平上全局性地执行着调控功能。  相似文献   

9.
经生物信息学分析, 在假单胞菌M18(Pseudomonas sp. M18)菌株的藤黄绿菌素(pyoluteorin, Plt)生物合成基因簇上游定位了一个属于LysR家族的调控因子编码基因pltR. 运用同源重组技术, 构建了pltR失活的突变菌株M18TRG, 在King’s B培养基中, 与野生型菌株相比, Plt合成能力下降了70%, 而吩嗪-1-羧酸(phenazine-1-carboxylic acid, PCA)的合成能力不受影响. 反式互补pltR的突变株能回复Plt的合成能力达到野生型水平. 在菌株M18中过表达pltR, Plt产量提高13倍, PCA产量没有改变. 这些结果表明pltR基因表达产物是Plt生物合成的特异性正调控因子. 在野生型菌株M18和不产Plt的突变株M18T中, pltR基因表达量无显著差异, 表明pltR基因的表达不受Plt调控. 与野生株相比, 突变株M18TRG中的转录融合plt-lacZ表达量显著降低, 表明PltR对Plt的正调控作用主要发生在转录水平上. 对pltR基因在gacA突变株M18G和rsmA突变株M18R中的表达量的进一步研究发现, PltR参与了gacA基因对Plt的合成的正调控, 但不参与rsmA基因对Plt合成的负调控.  相似文献   

10.
假单胞菌M-18qscR突变株的构建及其对抗生素合成的调控   总被引:1,自引:0,他引:1  
在革兰氏阴性菌中,全局性调控因子QscR参与菌群传感调节系统,调节多种毒素因子、次生代谢产物、稳定期基因以及参与生物膜形成的基因的表达,它通过与靶基因DNA启动子的调节元件结合,调节基因转录。假单胞菌株(Pseudomonas sp.)M-18是促进植物生长的根际细菌,能同时分泌藤黄绿菌素(pyoluterion,Plt)和吩嗪-1-羧酸(phenazine-1-carboxylicacid,PCA)。运用同源重组技术,构建了假单胞菌(Pseudomonas sp.)M-18株的qscR突变菌株M-18Q。比较野生株M-18和突变株M-18Q生物合成PCA和Plt的产量,在28℃恒温条件下,在PPM和KMB培养基中M-18Q菌株合成PCA的量分别约为野生型M-18菌株的4~6倍和3~5倍,分别达到480μg/mL和140μg/mL。在PPM培养基中,野生株M-18和突变株M-18Q几乎都没有Plt的合成,而在KMB培养基中,突变菌株和野生型M-18合成Plt的量基本一致。反式互补实验表明,在qscR突变株M-18Q中,PCA生物合成受到抑制而Plt的生物合成却不受影响。phzA基因是吩嗪合成基因簇中第一个基因,phzA‘-’lacZ翻译融合实验表明,qscR基因产物通过抑制PCA合成基因簇的表达,实施负调控作用。结果表明qscR基因是作为一个全局调控基因区别性地调控PCA和Plt的生物合成。  相似文献   

11.
假单胞菌M18的生防功能归功于其分泌吩嗪-1-羧酸和藤黄绿脓菌素。为了研究抗生物质合成代谢相关性及调控机制,分别构建了两种抗生物质合成基因簇插入突变株M18T和M18Z1。用翻译融合表达载体pMEAZ(pltA′-′lacZ)分别转化野生株和突变株M18T、发酵培养并测定β-半乳糖苷酶活性,结果显示,添加藤黄绿脓菌素使突变株M18T(pMEAZ)的β-半乳糖苷酶活性比野生株M18(pMEAZ)增加约6倍,表明藤黄绿脓菌素对自身基因簇具正向自诱导作用。抗生物质的测定结果显示,突变株M18T无藤黄绿脓菌素合成,而吩嗪-1-羧酸的合成量与野生株相同;突变株M18Z1与野生株相比,吩嗪-1-羧酸明显减少,藤黄绿脓菌素却显著提高。过量的吩嗪-1-羧酸又抑制藤黄绿脓菌素的合成。表明,假单胞菌M18中独有的代谢相关方式为:藤黄绿脓菌素不影响吩嗪-1-羧酸,但吩嗪-1-羧酸负调控藤黄绿脓菌素。  相似文献   

12.
假单胞菌M18是一株可同时合成并分泌吩嗪-1-羧酸(Phenazine-1-carboxylic acid,PCA)和藤黄绿脓菌素(Pyoluteorin,Plt)两种抗生物质的生防菌株。为了进一步研究假单胞菌M18抗生物质合成代谢的调控方式与机制,在分别构建gacAr、smA等单基因突变株基础上,又构建了gacArsmA双基因突变株M18GR以及gacA′-l′acZ和rsmA′-′lacZ等翻译融合表达载体(pMEGA和pMERA)。通过在PPM和KMB两种培养基中发酵培养和两种抗生物质PCA和Plt的HPLC定量测定显示,双突变株M18GR的PCA和Plt的合成量不论在PPM还是在KMB培养基中都介于单突变株M18G和M18R之间。由实验结果分析推测,两种调控因子对抗生物质合成的调控作用不是发生在转录水平,很可能发生在转录后水平。由β-半乳糖苷酶的定量分析表明,在假单胞菌M18中,两种调控因子不存在自诱导机制;虽然GacA未调控RsmA的合成,但RsmA可能部分正向调控GacA的表达。  相似文献   

13.
【目的】根际铜绿假单胞菌M18能产生藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)两种主要的抗生素。其PqsR/PQS群体感应系统由应答调控蛋白PqsR与信号分子PQS组成。前期研究已经表明pqsR负调控Plt生物合成及基因簇表达。本论文旨在研究PQS分子对Plt合成及基因表达的调控作用。【方法】从M18基因组中扩增PQS合成基因pqsA,通过同源重组技术构建假单胞菌M18的pqsA突变菌株M18pqsA。利用lacZ报告基因分析、信号分子添加实验等,研究PQS对Plt合成及基因表达的调控作用。【结果】在KMB培养基中,分别比较野生型菌株M18和突变菌株M18pqsA的Plt产量,突变菌株的Plt产量存在较小幅度的升高,约为野生型菌株的1.53倍。添加PQS对plt表达存在一定程度但不是很显著的负调控作用。【结论】PQS分子对Plt生物合成及基因表达存在部分负调控作用。  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号