首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文提出三种证据证明烟草核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的大亚基伸展在小亚基的外面,小亚基排列在大亚基中间的概念。证据是:1.固定化胰蛋白酶在一定条件下可水解RubisCO的大亚基但不水解小亚基,而天然胰蛋白酶水解大亚基,也水解小亚基。2.固定化抗小亚基IgG-Sepharose可与游离的小亚基相结合,但不能与全酶结合。3.低浓度尿素处理可使固定化的RubisCO-Sepharose上的小亚基解离下来,而大亚基仍结合在载体上,这说明RubisCO是通过定位在分子表面上的大亚基的ε-氨基与Sepharose共价偶联的。当RubisCO中的小亚基全部被解离后,大亚基之间的结合进一步增强,这时解离大亚基所需的尿素浓度要比小亚基存在时高。任何RubisCO的四级结构模型都应将小亚基置于大亚基中间受保护的位置,一部份小亚基可暴露于全酶分子表面。  相似文献   

2.
用菠菜和苜蓿二磷酸核酮糖羧化酶(RuBPcase)的抗体对八种植物的(RuBPCase)作双向免疫扩散反应,其免疫沉淀线均是部分交叉的(以菠菜和苜蓿KuBPCase为参照抗原)。不同品种的菠菜RuBPCase对同一品种菠菜RuBPCase抗体和不同品种苜蓿RuBPCase对同一品种苜蓿RuBPCase抗体的双向免疫扩散沉淀线均完全融合。各种植物的RuBPCase对菠菜RuBPCase大亚单位抗体的双向免疫扩散沉淀线都是完全融合的。因此植物种间RuBPCase免疫化学决定簇差异决定于小亚基上,而同一种内不同品种间酶的小亚基无免疫化学决定簇的差异。  相似文献   

3.
光和糖对水稻Rubisco活化酶基因表达的影响   总被引:1,自引:0,他引:1  
水稻黄化苗在光照2h内其Rubisco。活化酶的mRNA和蛋白量明显增加,然后维持在相对稳定的水平。光对水稻Rubisco活化酶的基因表达的诱导作用主要在转录水平上。Rubisco活化酶主要在绿叶中表达,这与Rubisco基因表达的器官特异性完全一致。用等渗葡萄糖喂养成熟的水稻叶片1h,促使水稻Rubisco大、小亚基和Rubisco活化酶可翻译mRNA含量下降。同样蔗糖对Rubisco小亚基和Rubisco活化酶的表达也有抑制,其作用弱于葡萄糖。  相似文献   

4.
H2O2对水稻Rubisco稳定性的影响   总被引:8,自引:0,他引:8  
H2 O2 浓度低于 2 0mmol·L-1时 ,Rubisco分子稳定 ;高于 2 0mmol·L-1则Rubisco的大亚基之间发生交联 ,全酶发生聚沉。H2 O2 处理后 ,Rubisco表面巯基数目减少 ,对两种蛋白水解酶尤其是胰蛋白酶的敏感性增强 ,大亚基水解明显增加。H2 O2 处理只会增加Rubisco大亚基的水解程度 ,不会造成新的水解位点  相似文献   

5.
用RT-PCR方法克隆了完整的水稻Rubisco小亚基前体cDNA基因,经耦联的体外转录和翻译系统合成了带同位素标记的小亚基前体蛋白,然后与新制备的豌豆完整叶绿体共保温,进行蛋白质的跨膜运输研究显示:异源的水稻Rubisco小亚基前体能穿膜运输入豌豆叶绿体。成熟小亚基不能进入叶绿体,进入叶绿体的小亚基量在一定范围内与外加的小亚基前体量成正比,光对小亚基的跨膜运输有一定的促进作用,外加ATP能显著促进小亚基前体的运输,而ADP无此作用。  相似文献   

6.
低温锻炼对水稻幼苗叶片中Rubisco的影响   总被引:1,自引:0,他引:1  
低温锻炼能提高水稻幼苗的抗冷力,低温锻炼虽不能明显提高Rubisoc活性,却提高了冷胁条件下Rubisoc的稳定性和增强了胁迫后正常生长条件下其活性的恢复能力。分别用火箭免疫电泳分析Rubisoc蛋白和SDS-PAGE分析大、小亚基量表明:低温锻炼未提高Rubisoc蛋白的合成能力,但增加了大、小亚基的合成量。经锻炼、冷胁迫以及恢复后Lsu/Ssu比值的变化主要是由于小亚基对温度变化更敏感所致。Rubisco酶特性分析表明,低温锻炼有减少水稻幼苗Rubisoc表面的SH数,并提高Rubisco蛋白在高、低温下的稳定性。  相似文献   

7.
在构建了羊草叶片cDNA文库的基础上,利用M13载体通用引物筛选其亚文库,挑选阳性克隆进行测序,将测序结果在NCBI基因库中进行比对,得到一个Rubisco大亚基基因全长序列和Rubisco小亚基基因部分序列,并对其核苷酸及其编码的氨基酸序列进行分析。结果显示,Rubisco大亚基基因长度为1 796 bp,与禾本科大麦、小麦、野雀麦、粗山羊草、旱麦草、异形花草、黑麦等的核苷酸序列同源性达98%以上;羊草的Rubisco小亚基基因部分序列含有一个开放阅读框,其长度为186 bp,编码61个氨基酸,与禾本科的小麦、大麦、燕麦、黑麦以及扁穗雀麦Rubisco小亚基基因氨基酸序列的同源性分别为93%、93%、91%、91%、92%。羊草Rubisco基因的克隆与分析有利于进一步研究其光合作用效率。  相似文献   

8.
应用免疫技术对Rubisco在中国小球藻(Chlorellaspp.640909)叶绿体中进行了分子定位及Native-PAGE电泳、SDS-PAGE电泳及其Westen印迹分析,并对小球藻淀粉核(Pyrenoid)超微结构进行了观察.结果显示Native-PAGE电泳图谱主要为一条主带,Westen印迹反应证明该条带即为Rubisco酶,SDS-PAGE电泳及其Western印迹图谱显示Rubisco大亚基分子量大约为55kD.中国小球藻淀粉核为椭圆形,被淀粉鞘所包围,中央有一条由2个类囊体组成的纵向通道,并在蛋白核内段处稍膨胀.淀粉核与叶绿体基质存在多处联系.免疫分子定位显示Rubisco大亚基和全酶分子主要分布于叶绿体的淀粉核上,且Rubisco在淀粉鞘部位也有少量分布,极少部分分布在叶绿体基质中,表明叶绿体淀粉核与光合作用关系密切.Rubisco聚集于淀粉核可能有利于藻类对CO2固定.  相似文献   

9.
小麦返白系返白期间Rubisco变化研究   总被引:1,自引:0,他引:1  
以小麦返白系和对照矮变1号为材料,选用返白系三个特殊的时期,返白初期、全白期、复绿初期,对其叶片可溶性蛋白进行了Native-PAGE和SDS-PAGE的研究。结果表明:随着叶片白化,核酮糖1.5-二磷酸羧化酶/加氧酶(Rubisco)全酶谱带逐渐变小,全白叶全酶谱带消失,随着复绿全酶谱带又出现,并逐渐恢复。而且Rubisco大、小亚基(LS、SS)谱带减少幅度差异很大,大亚基减少远远大于小亚基。  相似文献   

10.
研究了小麦(Triticum aestivum L.cv.Yangmai 158)叶片暗诱导衰老过程中1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco EC 4.1.1.39)的降解。发现在此期间Rubisco大亚基(LSU)发生裂解,产生50 kD的降解条带,同时在自然衰老过程中也检测到这一产物。初步实验结果表明LSU发生这步裂解时Rubisco全酶没有解离。另外,在粗酶液中当温度在30~35℃,pH7.5时,这一步裂解反应能有效进行。  相似文献   

11.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.  相似文献   

13.
Hubbs A  Roy H 《Plant physiology》1992,100(1):272-281
We have developed a new system for the in vitro synthesis of large subunits and their assembly into ribulose bisphosphate carboxylase oxygenase (Rubisco) holoenzyme in extracts of higher plant chloroplasts. This differs from previously described Rubisco assembly systems because the translation of the large subunits occurs in chloroplast extracts as opposed to isolated intact chloroplasts, and the subsequent assembly of large subunits into holoenzyme is completely dependent upon added small subunits. Amino acid incorporation in this system displayed the characteristics previously reported for chloroplast-based translation systems. Incorporation was sensitive to chloramphenicol or RNase but resistant to cycloheximide, required magnesium, and was stimulated by nucleotides. The primary product of this system was the large subunit of Rubisco. However, several lower molecular weight polypeptides were formed. These were structurally related to the Rubisco large subunit. The initiation inhibitor aurintricarboxylic acid (ATA) decreased the amount of lower molecular weight products accumulated. The accumulation of completed large subunits was only marginally reduced in the presence of ATA. The incorporation of newly synthesized large subunits into Rubisco holoenzyme occurred under conditions previously identified as optimal for the assembly of in organello-synthesized large subunits and required the addition of purified small subunits.  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and a 66-kD protein were co-purified from solubilized microsomal preparations of the green alga Botryococcus braunii by Green A agarose, sucrose density gradient, MonoQ, and gel filtration. The 66-kD protein remained intact after 6 M urea treatment and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It could be detected in the soluble fraction of the cell-free extract but appeared to be more abundant in the microsomal preparations. It cross-reacted with antibodies raised against Rubisco holoenzyme, large and small subunits, indicating that the 66-kD protein contains both the large and the small subunits of Rubisco. The N-terminal amino acid sequence of this protein and that of a proteolytic fragment showed high homology with the mature Rubisco small subunits, and the sequence of another proteolytic fragment showed high homology with that of the Rubisco large subunit. It is concluded that the 66-kD protein is produced by cross-linking of large and small sub-units of Rubisco in the cell.  相似文献   

15.
16.
Hubbs AE  Roy H 《Plant physiology》1993,101(2):523-533
In higher plants, ribulose bisphosphate carboxylase/oxygenase (Rubisco) consists of eight large "L" subunits, synthesized in chloroplasts, and eight small "S" subunits, synthesized as precursors in the cytosol. Assembly of these into holoenzyme occurs in the chloroplast stroma after import and processing of the S subunits. A chloroplast chaperonin interacts with the L subunits, which dissociate from the chaperonin before they assemble into holoenzyme. Our laboratory has reported L subunit assembly into Rubisco in chloroplast extracts after protein synthesis in leaves, intact chloroplasts, and most recently in membrane-free chloroplast extracts. We report here that the incorporation of in vitro-synthesized L subunits into holoenzyme depends on the conditions of L subunit synthesis. Rubisco assembly did not occur after L subunit synthesis at 160 mM KCI. When L subunit synthesis occurred at approximately 70 mM KCI, assembly depended on the temperature at which L subunit synthesis took place. These phenomena were the result of postsynthetic events taking place during incubation for protein synthesis. We separated these events from protein synthesis by lowering the temperature during protein synthesis. Lower temperatures supported the synthesis of full-length Rubisco L subunits. The assembly of these completed L subunits into Rubisco required intervening incubation with ATP, before addition of S subunits. ATP treatment mobilized L subunits from a complex with the chloroplast chaperonin 60 oligomer. Addition of 130 mM KCI at the beginning of the intervening incubation with ATP blocked the incorporation of L subunits into Rubisco. The inhibitory effect of high KCI was due to CI- and came after association of newly synthesized L subunits with chaperonin 60, but before S subunit addition. It is interesting that L subunits synthesized at [greater than or equal to]32[deg]C failed to assemble into Rubisco under any conditions. These results agree with previous results obtained in this laboratory using newly synthesized L subunits made in intact chloroplasts. They also show that assembly of in vitro-synthesized L subunits into Rubisco requires ATP, that CI- inhibits Rubisco assembly, and that synthesis temperature affects subsequent assembly competence of L subunits.  相似文献   

17.
In photosynthetic eukaryotes, the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is composed of eight large and eight small subunits. Chloroplast-coded large subunits are found in association with chaperonins (binding proteins) of 60-61 kd to form a high mol. wt pre-assembly complex (B-complex). We have isolated a heterotrophic, maternally-inherited mutant from Nicotiana tabacum var. Xanthi which accumulates the B-complex but contains no Rubisco holoenzyme. The B-complex of the mutant dissociates in the presence of ATP, as does that of the wild-type. Processing of the nuclear-coded small subunit takes place in the mutant and neither large nor small subunits accumulate. The large subunit gene from mutant and wild-type plants was cloned and sequenced. A single nucleotide difference was found between them predicting an amino acid change of serine to phenylalanine at position 112 in the mutant. Based on the resolved structure of N.tabacum Rubisco, it is argued that the alteration at position 112 prevents holoenzyme assembly by interfering with large subunit assembly.  相似文献   

18.
19.
Yu S  Mei FC  Lee JC  Cheng X 《Biochemistry》2004,43(7):1908-1920
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.  相似文献   

20.
We previously reported the presence of a highly active, carboxylase-specific ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. In this study, structural analysis of Pk -Rubisco has been performed. Phylogenetic analysis of Rubiscos indicated that archaeal Rubiscos, including Pk -Rubisco, were distinct from previously reported type I and type II enzymes in terms of primary structure. In order to investigate the existence of small subunits in native Pk -Rubisco, immunoprecipitation and native-PAGE experiments were performed. No specific protein other than the expected large subunit of Pk -Rubisco was detected when the cell-free extracts of P. kodakaraensis KOD1 were immunoprecipitated with polyclonal antibodies against the recombinant enzyme. Furthermore, native and recombinant Pk -Rubiscos exhibited identical mobilities on native-PAGE. These results indicated that native Pk -Rubisco consisted solely of large subunits. Electron micrographs of purified recombinant Pk -Rubisco displayed pentagonal ring-like assemblies of the molecules. Crystals of Pk -Rubisco obtained from ammonium sulfate solutions diffracted X-rays beyond 2.8 A resolution. The self-rotation function of the diffraction data showed the existence of 5-fold and 2-fold axes, which are located perpendicularly to each other. These results, along with the molecular mass of Pk -Rubisco estimated from gel filtration, strongly suggest that Pk -Rubisco is a decamer composed only of large subunits, with pentagonal ring-like structure. This is the first report of a decameric assembly of Rubisco, which is thought to belong to neither type I nor type II Rubiscos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号